Dodero Luca, Vascon Sebastiano, Murino Vittorio, Bifone Angelo, Gozzi Alessandro, Sona Diego
Pattern Analysis and Computer Vision Department (PAVIS), Istituto Italiano di Tecnologia Genova, Italy.
Magnetic Resonance Imaging Department, Center for Neuroscience and Cognitive Systems@UniTn, Istituto Italiano di Tecnologia Rovereto, Italy.
Front Neuroinform. 2015 Jan 12;8:87. doi: 10.3389/fninf.2014.00087. eCollection 2014.
Mapping of structural and functional connectivity may provide deeper understanding of brain function and disfunction. Diffusion Magnetic Resonance Imaging (DMRI) is a powerful technique to non-invasively delineate white matter (WM) tracts and to obtain a three-dimensional description of the structural architecture of the brain. However, DMRI tractography methods produce highly multi-dimensional datasets whose interpretation requires advanced analytical tools. Indeed, manual identification of specific neuroanatomical tracts based on prior anatomical knowledge is time-consuming and prone to operator-induced bias. Here we propose an automatic multi-subject fiber clustering method that enables retrieval of group-wise WM fiber bundles. In order to account for variance across subjects, we developed a multi-subject approach based on a method known as Dominant Sets algorithm, via an intra- and cross-subject clustering. The intra-subject step allows us to reduce the complexity of the raw tractography data, thus obtaining homogeneous neuroanatomically-plausible bundles in each diffusion space. The cross-subject step, characterized by a proper space-invariant metric in the original diffusion space, enables the identification of the same WM bundles across multiple subjects without any prior neuroanatomical knowledge. Quantitative analysis was conducted comparing our algorithm with spectral clustering and affinity propagation methods on synthetic dataset. We also performed qualitative analysis on mouse brain tractography retrieving significant WM structures. The approach serves the final goal of detecting WM bundles at a population level, thus paving the way to the study of the WM organization across groups.
结构和功能连接性的映射可能会提供对脑功能和功能障碍更深入的理解。扩散磁共振成像(DMRI)是一种强大的技术,可用于非侵入性地描绘白质(WM)束,并获得大脑结构架构的三维描述。然而,DMRI纤维束成像方法会产生高度多维的数据集,其解读需要先进的分析工具。实际上,基于先前的解剖学知识手动识别特定的神经解剖束既耗时又容易受到操作员引起的偏差影响。在此,我们提出一种自动多主体纤维聚类方法,该方法能够检索组水平的WM纤维束。为了考虑不同主体之间的差异,我们通过主体内和主体间聚类,基于一种称为主导集算法的方法开发了一种多主体方法。主体内步骤使我们能够降低原始纤维束成像数据的复杂性,从而在每个扩散空间中获得均匀的、符合神经解剖学常理的束。主体间步骤在原始扩散空间中采用适当的空间不变度量,能够在无需任何先前神经解剖学知识的情况下识别多个主体间相同的WM束。我们在合成数据集上对我们的算法与谱聚类和亲和传播方法进行了定量分析比较。我们还对小鼠脑纤维束成像进行了定性分析,检索到了重要的WM结构。该方法服务于在群体水平上检测WM束的最终目标,从而为跨群体研究WM组织铺平道路。