Page Taylor R, Hoffman Brian M
Department of Chemistry, Northwestern University , 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States.
Biochemistry. 2015 Feb 10;54(5):1188-97. doi: 10.1021/bi500888y. Epub 2015 Jan 28.
Extensive studies of the physiological protein-protein electron-transfer (ET) complex between yeast cytochrome c peroxidase (CcP) and cytochrome c (Cc) have left unresolved questions about how formation and dissociation of binary and ternary complexes influence ET. We probe this issue through a study of the photocycle of ET between Zn-protoporphyrin IX-substituted CcP(W191F) (ZnPCcP) and Cc. Photoexcitation of ZnPCcP in complex with Fe(3+)Cc initiates the photocycle: charge-separation ET, [(3)ZnPCcP, Fe(3+)Cc] → [ZnP(+)CcP, Fe(2+)Cc], followed by charge recombination, [ZnP(+)CcP, Fe(2+)Cc] → [ZnPCcP, Fe(3+)Cc]. The W191F mutation eliminates fast hole hopping through W191, enhancing accumulation of the charge-separated intermediate and extending the time scale for binding and dissociation of the charge-separated complex. Both triplet quenching and the charge-separated intermediate were monitored during titrations of ZnPCcP with Fe(3+)Cc, Fe(2+)Cc, and redox-inert CuCc. The results require a photocycle that includes dissociation and/or recombination of the charge-separated binary complex and a charge-separated ternary complex, [ZnP(+)CcP, Fe(2+)Cc, Fe(3+)Cc]. The expanded kinetic scheme formalizes earlier proposals of "substrate-assisted product dissociation" within the photocycle. The measurements yield the thermodynamic affinity constants for binding the first and second Cc: KI = 10(-7) M(-1), and KII = 10(-4) M(-1). However, two-site analysis of the thermodynamics of formation of the ternary complex reveals that Cc binds at the weaker-binding site with much greater affinity than previously recognized and places upper bounds on the contributions of repulsion between the two Cc's of the ternary complex. In conjunction with recent nuclear magnetic resonance studies, the analysis further suggests a dynamic view of the ternary complex, wherein neither Cc necessarily faithfully adopts the crystal-structure configuration because of Cc-Cc repulsion.
对酵母细胞色素c过氧化物酶(CcP)和细胞色素c(Cc)之间的生理性蛋白质-蛋白质电子转移(ET)复合物进行的广泛研究,留下了关于二元和三元复合物的形成和解离如何影响电子转移的未解决问题。我们通过研究锌原卟啉IX取代的CcP(W191F)(ZnPCcP)与Cc之间的电子转移光循环来探究这个问题。与Fe(3+)Cc形成复合物的ZnPCcP的光激发引发光循环:电荷分离电子转移,[(3)ZnPCcP, Fe(3+)Cc] → [ZnP(+)CcP, Fe(2+)Cc],随后是电荷复合,[ZnP(+)CcP, Fe(2+)Cc] → [ZnPCcP, Fe(3+)Cc]。W191F突变消除了通过W191的快速空穴跳跃,增强了电荷分离中间体的积累,并延长了电荷分离复合物结合和解离的时间尺度。在用Fe(3+)Cc、Fe(2+)Cc和氧化还原惰性的CuCc滴定ZnPCcP的过程中,监测了三重态猝灭和电荷分离中间体。结果需要一个包括电荷分离二元复合物和电荷分离三元复合物[ZnP(+)CcP, Fe(2+)Cc, Fe(3+)Cc]的解离和/或复合的光循环。扩展的动力学方案使光循环内“底物辅助产物解离”的早期提议形式化。测量得出结合第一个和第二个Cc的热力学亲和常数:KI = 10(-7) M(-1),KII = 10(-4) M(-1)。然而,对三元复合物形成热力学的双位点分析表明,Cc在较弱结合位点的结合亲和力比以前认识到的要大得多,并对三元复合物中两个Cc之间的排斥作用贡献设定了上限。结合最近的核磁共振研究,该分析进一步提出了三元复合物的动态观点,即由于Cc-Cc排斥,两个Cc不一定忠实地采用晶体结构构型。