Kang Seong A, Crane Brian R
Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA.
Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15465-70. doi: 10.1073/pnas.0505176102. Epub 2005 Oct 14.
Although bonding networks determine electron-transfer (ET) rates within proteins, the mechanism by which structure and dynamics influence ET across protein interfaces is not well understood. Measurements of photochemically induced ET and subsequent charge recombination between Zn-porphyrin-substituted cytochrome c peroxidase and cytochrome c in single crystals correlate reactivity with defined structures for different association modes of the redox partners. Structures and ET rates in crystals are consistent with tryptophan oxidation mediating charge recombination reactions. Conservative mutations at the interface can drastically affect how the proteins orient and dispose redox centers. Whereas some configurations are ET inactive, the wild-type complex exhibits the fastest recombination rate. Other association modes generate ET rates that do not correlate with predictions based on cofactor separations or simple bonding pathways. Inhibition of photoinduced ET at <273 K indicates gating by small-amplitude dynamics, even within the crystal. Thus, different associations achieve states of similar reactivity, and within those states conformational fluctuations enable interprotein ET.
尽管键合网络决定了蛋白质内部的电子转移(ET)速率,但结构和动力学影响跨蛋白质界面的电子转移的机制尚未得到很好的理解。在单晶中对光化学诱导的电子转移以及随后锌卟啉取代的细胞色素c过氧化物酶和细胞色素c之间的电荷复合进行的测量,将反应性与氧化还原伙伴不同缔合模式的确定结构相关联。晶体中的结构和电子转移速率与介导电荷复合反应的色氨酸氧化一致。界面处的保守突变会极大地影响蛋白质如何定向和排列氧化还原中心。虽然某些构型无电子转移活性,但野生型复合物表现出最快的复合速率。其他缔合模式产生的电子转移速率与基于辅因子分离或简单键合途径的预测不相关。在<273 K下对光诱导电子转移的抑制表明即使在晶体内也存在由小幅度动力学引起的门控。因此,不同的缔合实现了相似反应性的状态,并且在这些状态内构象波动使得蛋白质间的电子转移成为可能。