Huber Wolfgang, Carey Vincent J, Gentleman Robert, Anders Simon, Carlson Marc, Carvalho Benilton S, Bravo Hector Corrada, Davis Sean, Gatto Laurent, Girke Thomas, Gottardo Raphael, Hahne Florian, Hansen Kasper D, Irizarry Rafael A, Lawrence Michael, Love Michael I, MacDonald James, Obenchain Valerie, Oleś Andrzej K, Pagès Hervé, Reyes Alejandro, Shannon Paul, Smyth Gordon K, Tenenbaum Dan, Waldron Levi, Morgan Martin
European Molecular Biology Laboratory, Heidelberg, Germany.
1] Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA. [2] Harvard School of Public Health, Boston, Massachusetts, USA.
Nat Methods. 2015 Feb;12(2):115-21. doi: 10.1038/nmeth.3252.
Bioconductor is an open-source, open-development software project for the analysis and comprehension of high-throughput data in genomics and molecular biology. The project aims to enable interdisciplinary research, collaboration and rapid development of scientific software. Based on the statistical programming language R, Bioconductor comprises 934 interoperable packages contributed by a large, diverse community of scientists. Packages cover a range of bioinformatic and statistical applications. They undergo formal initial review and continuous automated testing. We present an overview for prospective users and contributors.
Bioconductor是一个用于基因组学和分子生物学中高通量数据的分析与理解的开源、开放式开发软件项目。该项目旨在促进跨学科研究、合作以及科学软件的快速开发。基于统计编程语言R,Bioconductor由众多不同领域的科学家贡献的934个可互操作的软件包组成。这些软件包涵盖了一系列生物信息学和统计应用。它们经过正式的初步审查和持续的自动化测试。我们为潜在用户和贡献者提供一个概述。