Suppr超能文献

用于酶发现的计算机辅助序列注释(CASA)工作流程。

The Computer-Assisted Sequence Annotation (CASA) workflow for enzyme discovery.

作者信息

Takahashi Gemma R, Cumpio Franchesca M, Butts Carter T, Martin Rachel W

机构信息

Department of Molecular Biology and Biochemistry University of California Irvine 92697-3900 California USA.

Departments of Sociology, Statistics, Computer Science, and Electrical Engineering and Computer Science University of California Irvine 92697 California USA.

出版信息

Appl Plant Sci. 2025 Jun 3;13(4):e70009. doi: 10.1002/aps3.70009. eCollection 2025 Jul-Aug.

Abstract

PREMISE

With the advent of inexpensive nucleic acid sequencing and automated annotation at the level of basic functionality, the central problem of enzyme discovery is no longer finding active sequences, it is determining which ones are suitable for further study. This requires annotation that goes beyond sequence similarity to known enzymes and provides information at the sequence and structural levels.

METHODS

Here we introduce a workflow for generating highly informative, richly annotated sequence alignments from protein sequence data. Computer-Assisted Sequence Annotation (CASA) is a freely available Python-based workflow designed to automate portions of novel protein characterization, while producing a human-interpretable final output.

RESULTS

We demonstrate CASA using one enzyme from the genome. The workflow generates detailed annotations providing comparisons to known reference sequences. In addition to sequence similarity and predicted function, user-specified features such as active site residues, disulfide bonds, and substrate-binding residues can be displayed, and these can then be combined with downstream analyses to gain new insights into enzyme structure and function.

DISCUSSION

This work demonstrates the utility of detailed annotations and protein structure prediction for choosing protein targets for biochemistry or structural biology from nucleic acid sequence data. The toolchain is freely available along with instructions and representative examples.

摘要

前提

随着廉价核酸测序技术的出现以及在基本功能层面的自动注释,酶发现的核心问题不再是寻找活性序列,而是确定哪些序列适合进一步研究。这需要超越与已知酶的序列相似性的注释,并在序列和结构层面提供信息。

方法

在此,我们介绍一种从蛋白质序列数据生成信息丰富、注释详尽的序列比对的工作流程。计算机辅助序列注释(CASA)是一种基于Python的免费工作流程,旨在自动完成新型蛋白质表征的部分工作,同时生成可供人类解读的最终输出。

结果

我们使用基因组中的一种酶展示了CASA。该工作流程生成详细注释,提供与已知参考序列的比较。除了序列相似性和预测功能外,还可以显示用户指定的特征,如活性位点残基、二硫键和底物结合残基,然后可将这些特征与下游分析相结合,以深入了解酶的结构和功能。

讨论

这项工作证明了详细注释和蛋白质结构预测在从核酸序列数据中选择用于生物化学或结构生物学研究的蛋白质靶点方面的实用性。该工具链可免费获取,并附带使用说明和代表性示例。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9360/12319702/5eadecf03c04/APS3-13-e70009-g002.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验