van der Geer Simone, Kleingeld P Ad M, Snijders Chris C P, Rinkens Frank J C H, Jansen Geert A E, Neumann H A Martino, Krekels Gertruud A M
MohsA Skin Cancer Clinic, Venray and Eindhoven, The Netherlands.
Dermatology. 2015;230(2):161-9. doi: 10.1159/000369790. Epub 2015 Jan 28.
The incidence and prevalence of skin cancer is rising. A detection model could support the (screening) process of diagnosing non-melanoma skin cancer.
A questionnaire was developed containing potential actinic keratosis (AK) and basal cell carcinoma (BCC) characteristics. Three nurses diagnosed 204 patients with a lesion suspicious of skin (pre)malignancy and filled in the questionnaire. Logistic regression analyses generated prediction models for AK and BCC.
A prediction model containing nine characteristics correctly predicted the presence or absence of AK in 83.2% of the cases. BCC was predicted correctly in 91.4% of the cases by a model containing eight characteristics. The nurses correctly diagnosed AK in 88.3% and BCC in 90.9% of the cases.
Detection or screening models for AK and BCC could be made with a limited number of variables. Nurses also diagnosed skin lesions correctly in a high percentage of cases. Further research is necessary to investigate the robustness of these findings, whether the percentage of correct diagnoses can be improved and how best to implement model-based prediction in the diagnostic process.
皮肤癌的发病率和患病率正在上升。一种检测模型可以支持非黑色素瘤皮肤癌的(筛查)诊断过程。
设计了一份包含潜在光化性角化病(AK)和基底细胞癌(BCC)特征的问卷。三名护士对204例有皮肤(癌前)恶性病变可疑病灶的患者进行诊断,并填写问卷。逻辑回归分析生成了AK和BCC的预测模型。
一个包含九个特征的预测模型在83.2%的病例中正确预测了AK的存在与否。一个包含八个特征的模型在91.4%的病例中正确预测了BCC。护士在88.3%的病例中正确诊断出AK,在90.9%的病例中正确诊断出BCC。
可以用有限数量的变量建立AK和BCC的检测或筛查模型。护士在很高比例的病例中也能正确诊断皮肤病变。有必要进一步研究这些发现的稳健性,正确诊断的百分比是否可以提高,以及如何在诊断过程中最好地实施基于模型的预测。