Chemical Sciences and Engineering Division, ‡Materials Sciences Division, and §X-ray Science Division, Advanced Photon Source, Argonne National Laboratory , Argonne, Illinois 60439, United States.
J Am Chem Soc. 2015 Feb 18;137(6):2328-35. doi: 10.1021/ja511299y. Epub 2015 Feb 9.
Direct observations of structure-electrochemical activity relationships continue to be a key challenge in secondary battery research. (6)Li magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy is the only structural probe currently available that can quantitatively characterize local lithium environments on the subnanometer scale that dominates the free energy for site occupation in lithium-ion (Li-ion) intercalation materials. In the present study, we use this local probe to gain new insights into the complex electrochemical behavior of activated 0.5(6)Li2MnO3·0.5(6)LiMn(0.5)Ni(0.5)O2, lithium- and manganese-rich transition-metal (TM) oxide intercalation electrodes. We show direct evidence of path-dependent lithium site occupation, correlated to structural reorganization of the metal oxide and the electrochemical hysteresis, during lithium insertion and extraction. We report new (6)Li resonances centered at ∼1600 ppm that are assigned to LiMn6-TM(tet) sites, specifically, a hyperfine shift related to a small fraction of re-entrant tetrahedral TMs (Mn(tet)), located above or below lithium layers, coordinated to LiMn6 units. The intensity of the TM layer lithium sites correlated with tetrahedral TMs loses intensity after cycling, indicating limited reversibility of TM migrations upon cycling. These findings reveal that defect sites, even in dilute concentrations, can have a profound effect on the overall electrochemical behavior.
直接观察结构-电化学活性关系仍然是二次电池研究中的一个关键挑战。(6)Li 魔角旋转(MAS)核磁共振(NMR)光谱是目前唯一可用的结构探针,可定量表征在亚纳米尺度上主导锂离子(Li-ion)嵌入材料中占据位置自由能的局部锂环境。在本研究中,我们使用这种局部探针深入了解活性 0.5(6)Li2MnO3·0.5(6)LiMn(0.5)Ni(0.5)O2、富锂和富锰过渡金属(TM)氧化物嵌入电极的复杂电化学行为。我们直接证明了锂离子占据的位置与金属氧化物的结构重排和电化学滞后有关,这是一个与锂离子插入和提取过程中路径相关的现象。我们报告了新的(6)Li 共振峰,位于约 1600 ppm,归因于 LiMn6-TM(tet) 位,特别是与少量重新进入四面体 TM(Mn(tet))相关的超精细位移,这些 TM 位于锂层的上方或下方,与 LiMn6 单元配位。TM 层锂位的强度与四面体 TM 的强度相关,在循环后会减弱,表明 TM 迁移的可逆性有限。这些发现表明,即使在稀释浓度下,缺陷位点也会对整体电化学行为产生深远影响。