Marie John-Joseph, House Robert A, Rees Gregory J, Robertson Alex W, Jenkins Max, Chen Jun, Agrestini Stefano, Garcia-Fernandez Mirian, Zhou Ke-Jin, Bruce Peter G
Department of Materials, University of Oxford, Oxford, UK.
The Faraday Institution, Didcot, UK.
Nat Mater. 2024 Jun;23(6):818-825. doi: 10.1038/s41563-024-01833-z. Epub 2024 Mar 1.
Oxygen redox cathodes, such as LiNiCoMnO, deliver higher energy densities than those based on transition metal redox alone. However, they commonly exhibit voltage fade, a gradually diminishing discharge voltage on extended cycling. Recent research has shown that, on the first charge, oxidation of O ions forms O molecules trapped in nano-sized voids within the structure, which can be fully reduced to O on the subsequent discharge. Here we show that the loss of O-redox capacity on cycling and therefore voltage fade arises from a combination of a reduction in the reversibility of the O/O redox process and O loss. The closed voids that trap O grow on cycling, rendering more of the trapped O electrochemically inactive. The size and density of voids leads to cracking of the particles and open voids at the surfaces, releasing O. Our findings implicate the thermodynamic driving force to form O as the root cause of transition metal migration, void formation and consequently voltage fade in Li-rich cathodes.
氧还原阴极,如LiNiCoMnO,比仅基于过渡金属氧化还原的阴极具有更高的能量密度。然而,它们通常会出现电压衰减,即在长时间循环中放电电压逐渐降低。最近的研究表明,在首次充电时,O离子的氧化会形成被困在结构内纳米级空隙中的O分子,这些O分子在随后的放电过程中可以完全还原为O。在此我们表明,循环过程中O氧化还原容量的损失以及因此导致的电压衰减是由O/O氧化还原过程的可逆性降低和O损失共同导致的。捕获O的封闭空隙在循环过程中会增大,使更多被困的O失去电化学活性。空隙的大小和密度会导致颗粒开裂以及表面出现开放空隙,从而释放O。我们的研究结果表明,形成O的热力学驱动力是富锂阴极中过渡金属迁移、空隙形成以及进而导致电压衰减的根本原因。