Suppr超能文献

匹兹堡心脏骤停类别疾病严重程度评分的验证

Validation of the Pittsburgh Cardiac Arrest Category illness severity score.

作者信息

Coppler Patrick J, Elmer Jonathan, Calderon Luis, Sabedra Alexa, Doshi Ankur A, Callaway Clifton W, Rittenberger Jon C, Dezfulian Cameron

机构信息

Safar Center for Resuscitation Research, University of Pittsburgh, United States; Department of Critical Care Medicine, University of Pittsburgh, United States.

Department of Emergency Medicine, University of Pittsburgh, United States; Department of Critical Care Medicine, University of Pittsburgh, United States.

出版信息

Resuscitation. 2015 Apr;89:86-92. doi: 10.1016/j.resuscitation.2015.01.020. Epub 2015 Jan 28.

Abstract

BACKGROUND

The purpose of this study was to validate the ability of an early post-cardiac arrest illness severity classification to predict patient outcomes.

METHODS

The Pittsburgh Cardiac Arrest Category (PCAC) is a 4-level illness severity score that was found to be strongly predictive of outcomes in the initial derivation study. We assigned PCAC scores to consecutive in and out-of-hospital cardiac arrest subjects treated at two tertiary care centers between January 2011 and September 2013. We made assignments prospectively at Site 1 and retrospectively at Site 2. Our primary outcome was survival to hospital discharge. Inter-rater reliability of retrospective PCAC assessments was assessed. Secondary outcomes were favorable discharge disposition (home or acute rehabilitation), Cerebral Performance Category (CPC) and modified Rankin Scale (mRS) at hospital discharge. We tested the association of PCAC with each outcome using unadjusted and multivariable logistic regression.

RESULTS

We included 607 cardiac arrest patients during the study (393 at Site 1 and 214 at Site 2). Site populations differed in age, arrest location, rhythm, use of hypothermia and distribution of PCAC. Inter-rater reliability of retrospective PCAC assignments was excellent (κ=0.81). PCAC was associated with survival (unadjusted odds ratio (OR) for Site 1: 0.33 (95% confidence interval (CI) 0.27-0.41)) Site 2: 0.32 (95% CI 0.24-0.43) even after adjustment for other clinical variables (adjusted OR Site 1: 0.32 (95% CI 0.25-0.41) Site 2: 0.31 (95% CI 0.22-0.44)). PCAC was predictive of secondary outcomes.

CONCLUSIONS

Our results confirm that PCAC is strongly predictive of survival and good functional outcome after cardiac arrest.

摘要

背景

本研究的目的是验证心脏骤停后早期疾病严重程度分类预测患者预后的能力。

方法

匹兹堡心脏骤停分类(PCAC)是一个4级疾病严重程度评分,在初始推导研究中发现其对预后有很强的预测性。我们为2011年1月至2013年9月期间在两个三级医疗中心接受治疗的连续的院内心脏骤停和院外心脏骤停患者分配PCAC评分。我们在1号研究点前瞻性地进行评分分配,在2号研究点回顾性地进行评分分配。我们的主要结局是存活至出院。评估了回顾性PCAC评估的评分者间信度。次要结局是出院时良好的出院处置(回家或急性康复)、脑功能分类(CPC)和改良Rankin量表(mRS)。我们使用未调整和多变量逻辑回归测试PCAC与每个结局的关联。

结果

我们在研究期间纳入了607例心脏骤停患者(1号研究点393例,2号研究点214例)。两个研究点的人群在年龄、骤停位置、心律、低温使用情况和PCAC分布方面存在差异。回顾性PCAC评分分配的评分者间信度极佳(κ=0.81)。PCAC与存活相关(1号研究点未调整优势比(OR):0.33(95%置信区间(CI)0.27-0.41)),2号研究点:0.32(95%CI 0.24-0.43),即使在调整其他临床变量后(1号研究点调整后OR:0.32(95%CI 0.25-0.41),2号研究点:0.31(95%CI 0.22-0.44))。PCAC可预测次要结局。

结论

我们的结果证实,PCAC对心脏骤停后的存活和良好功能结局有很强的预测性。

相似文献

1
Validation of the Pittsburgh Cardiac Arrest Category illness severity score.匹兹堡心脏骤停类别疾病严重程度评分的验证
Resuscitation. 2015 Apr;89:86-92. doi: 10.1016/j.resuscitation.2015.01.020. Epub 2015 Jan 28.

引用本文的文献

5
Post Cardiac Arrest Care in the Cardiac Intensive Care Unit.心脏重症监护病房心脏骤停后的护理。
Curr Cardiol Rep. 2024 Feb;26(2):35-49. doi: 10.1007/s11886-023-02015-0. Epub 2024 Jan 12.

本文引用的文献

2
Targeted temperature management at 33°C versus 36°C after cardiac arrest.心脏骤停后 33°C 与 36°C 的目标温度管理。
N Engl J Med. 2013 Dec 5;369(23):2197-206. doi: 10.1056/NEJMoa1310519. Epub 2013 Nov 17.
6
APACHE II scoring to predict outcome in post-cardiac arrest.APACHE II 评分预测心搏骤停后患者的预后。
Resuscitation. 2013 May;84(5):651-6. doi: 10.1016/j.resuscitation.2012.10.024. Epub 2012 Nov 20.
7
Trends in survival after in-hospital cardiac arrest.院内心脏骤停后生存率的变化趋势。
N Engl J Med. 2012 Nov 15;367(20):1912-20. doi: 10.1056/NEJMoa1109148.
8
Nationwide improvements in survival from out-of-hospital cardiac arrest in Japan.日本院外心脏骤停患者生存率的全国性提高。
Circulation. 2012 Dec 11;126(24):2834-43. doi: 10.1161/CIRCULATIONAHA.112.109496. Epub 2012 Oct 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验