Suppr超能文献

对厚垣孢普可尼亚菌完整线粒体基因组的分析表明,它与肉座菌目中的无脊椎动物致病真菌关系密切。

Analysis of the complete mitochondrial genome of Pochonia chlamydosporia suggests a close relationship to the invertebrate-pathogenic fungi in Hypocreales.

作者信息

Lin Runmao, Liu Chichuan, Shen Baoming, Bai Miao, Ling Jian, Chen Guohua, Mao Zhenchuan, Cheng Xinyue, Xie Bingyan

机构信息

Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.

College of Plant Protection, Hunan Agricultural University, Changsha, Hunan Province, 410128, China.

出版信息

BMC Microbiol. 2015 Jan 31;15:5. doi: 10.1186/s12866-015-0341-8.

Abstract

BACKGROUND

The fungus Pochonia chlamydosporia parasitizes nematode eggs and has become one of the most promising biological control agents (BCAs) for plant-parasitic nematodes, which are major agricultural pests that cause tremendous economic losses worldwide. The complete mitochondrial (mt) genome is expected to open new avenues for understanding the phylogenetic relationships and evolution of the invertebrate-pathogenic fungi in Hypocreales.

RESULTS

The complete mitogenome sequence of P. chlamydosporia is 25,615 bp in size, containing the 14 typical protein-coding genes, two ribosomal RNA genes, an intronic ORF coding for a putative ribosomal protein (rps3) and a set of 23 transfer RNA genes (trn) which recognize codons for all amino acids. Sequence similarity studies and syntenic gene analyses show that 87.02% and 58.72% of P. chlamydosporia mitogenome sequences match 90.50% of Metarhizium anisopliae sequences and 61.33% of Lecanicillium muscarium sequences with 92.38% and 86.04% identities, respectively. A phylogenetic tree inferred from 14 mt proteins in Pezizomycotina fungi supports that P. chlamydosporia is most closely related to the entomopathogenic fungus M. anisopliae. The invertebrate-pathogenic fungi in Hypocreales cluster together and clearly separate from a cluster comprising plant-pathogenic fungi (Fusarium spp.) and Hypocrea jecorina. A comparison of mitogenome sizes shows that the length of the intergenic regions or the intronic regions is the major size contributor in most of mitogenomes in Sordariomycetes. Evolutionary analysis shows that rps3 is under positive selection, leading to the display of unique evolutionary characteristics in Hypocreales. Moreover, the variability of trn distribution has a clear impact on gene order in mitogenomes. Gene rearrangement analysis shows that operation of transposition drives the rearrangement events in Pezizomycotina, and most events involve in trn position changes, but no rearrangement was found in Clavicipitaceae.

CONCLUSIONS

We present the complete annotated mitogenome sequence of P. chlamydosporia. Based on evolutionary and phylogenetic analyses, we have determined the relationships between the invertebrate-pathogenic fungi in Hypocreales. The invertebrate-pathogenic fungi in Hypocreales referred to in this paper form a monophyletic group sharing a most recent common ancestor. Our rps3 and trn gene order results also establish a foundation for further exploration of the evolutionary trajectory of the fungi in Hypocreales.

摘要

背景

厚垣普可尼亚菌可寄生于线虫卵,已成为最具潜力的植物寄生线虫生物防治剂之一,植物寄生线虫是造成全球巨大经济损失的主要农业害虫。完整的线粒体(mt)基因组有望为理解肉座菌目无脊椎动物致病真菌的系统发育关系和进化开辟新途径。

结果

厚垣普可尼亚菌的完整线粒体基因组序列大小为25,615 bp,包含14个典型的蛋白质编码基因、两个核糖体RNA基因、一个编码假定核糖体蛋白(rps3)的内含子开放阅读框以及一组23个转运RNA基因(trn),这些基因可识别所有氨基酸的密码子。序列相似性研究和共线性基因分析表明,厚垣普可尼亚菌线粒体基因组序列的87.02%和58.72%分别与绿僵菌序列的90.50%和蜡蚧轮枝菌序列的61.33%匹配,同一性分别为92.38%和86.04%。基于盘菌亚门真菌中14种线粒体蛋白推断的系统发育树支持厚垣普可尼亚菌与昆虫病原真菌绿僵菌关系最为密切。肉座菌目的无脊椎动物致病真菌聚在一起,明显与包括植物致病真菌(镰刀菌属)和嗜热毁丝霉在内的一个类群分开。线粒体基因组大小比较表明,基因间隔区或内含子区的长度是粪壳菌纲大多数线粒体基因组大小的主要贡献因素。进化分析表明,rps3受到正选择,导致肉座菌目呈现独特的进化特征。此外,trn分布的变异性对线粒体基因组中的基因顺序有明显影响。基因重排分析表明,转座作用驱动了盘菌亚门中的重排事件,大多数事件涉及trn位置变化,但在麦角菌科中未发现重排。

结论

我们公布了厚垣普可尼亚菌完整的注释线粒体基因组序列。基于进化和系统发育分析,我们确定了肉座菌目无脊椎动物致病真菌之间的关系。本文所指的肉座菌目无脊椎动物致病真菌形成一个单系类群,共享一个最近的共同祖先。我们的rps3和trn基因顺序结果也为进一步探索肉座菌目真菌的进化轨迹奠定了基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bc6f/4360972/243df14c3b6f/12866_2015_341_Fig1_HTML.jpg

相似文献

2
The complete mitochondrial genome of the nematophagous fungus Lecanicillium saksenae.
Mitochondrial DNA A DNA Mapp Seq Anal. 2017 Jan;28(1):52-53. doi: 10.3109/19401736.2015.1110794. Epub 2015 Dec 28.
4
Mitochondrial genome of the nematode endoparasitic fungus Hirsutella vermicola reveals a high level of synteny in the family Ophiocordycipitaceae.
Appl Microbiol Biotechnol. 2017 Apr;101(8):3295-3304. doi: 10.1007/s00253-017-8257-x. Epub 2017 Mar 24.
9
Development of a high-efficiency gene knockout system for Pochonia chlamydosporia.
Microbiol Res. 2015 Jan;170:18-26. doi: 10.1016/j.micres.2014.10.001. Epub 2014 Oct 18.

引用本文的文献

3
The complete mitogenome of the entomopathogenic fungus 15R.
Mitochondrial DNA B Resour. 2023 Dec 18;8(12):1411-1415. doi: 10.1080/23802359.2023.2292145. eCollection 2023.
4
(Hypocreaceae) has the smallest mitogenome of the genus .
Front Microbiol. 2023 Jun 13;14:1141087. doi: 10.3389/fmicb.2023.1141087. eCollection 2023.
7
Comparative Mitogenomic Analysis and the Evolution of Anastomosis Groups.
Front Microbiol. 2021 Sep 20;12:707281. doi: 10.3389/fmicb.2021.707281. eCollection 2021.
10
The complete mitochondrial genome of huperzine A-producing endophytic fungus .
Mitochondrial DNA B Resour. 2016 Apr 11;1(1):202-203. doi: 10.1080/23802359.2016.1155086.

本文引用的文献

1
Sequencing and functional analysis of the genome of a nematode egg-parasitic fungus, Pochonia chlamydosporia.
Fungal Genet Biol. 2014 Apr;65:69-80. doi: 10.1016/j.fgb.2014.02.002. Epub 2014 Feb 13.
2
High variability of mitochondrial gene order among fungi.
Genome Biol Evol. 2014 Feb;6(2):451-65. doi: 10.1093/gbe/evu028.
3
Complete mitochondrial DNA genome of the medicinal mushroom Cordyceps militaris (Ascomycota, Cordycipitaceae).
Mitochondrial DNA. 2015;26(5):789-90. doi: 10.3109/19401736.2013.855754. Epub 2013 Dec 9.
4
MEGA6: Molecular Evolutionary Genetics Analysis version 6.0.
Mol Biol Evol. 2013 Dec;30(12):2725-9. doi: 10.1093/molbev/mst197. Epub 2013 Oct 16.
5
Cytoplasmic ribosomal protein S3 (rpS3) plays a pivotal role in mitochondrial DNA damage surveillance.
Biochim Biophys Acta. 2013 Dec;1833(12):2943-2952. doi: 10.1016/j.bbamcr.2013.07.015. Epub 2013 Jul 30.
6
OrganellarGenomeDRAW--a suite of tools for generating physical maps of plastid and mitochondrial genomes and visualizing expression data sets.
Nucleic Acids Res. 2013 Jul;41(Web Server issue):W575-81. doi: 10.1093/nar/gkt289. Epub 2013 Apr 22.
8
10
Update on activities at the Universal Protein Resource (UniProt) in 2013.
Nucleic Acids Res. 2013 Jan;41(Database issue):D43-7. doi: 10.1093/nar/gks1068. Epub 2012 Nov 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验