van der Heijden Marcel G A, Martin Francis M, Selosse Marc-André, Sanders Ian R
Plant-Soil Interactions, Institute for Sustainability Sciences, Agroscope, 8046, Zürich, Switzerland.
Institute of Evolutionary Biology and Environmental Studies, University of Zürich, 8057, Zürich, Switzerland.
New Phytol. 2015 Mar;205(4):1406-1423. doi: 10.1111/nph.13288. Epub 2015 Feb 2.
Almost all land plants form symbiotic associations with mycorrhizal fungi. These below-ground fungi play a key role in terrestrial ecosystems as they regulate nutrient and carbon cycles, and influence soil structure and ecosystem multifunctionality. Up to 80% of plant N and P is provided by mycorrhizal fungi and many plant species depend on these symbionts for growth and survival. Estimates suggest that there are c. 50 000 fungal species that form mycorrhizal associations with c. 250 000 plant species. The development of high-throughput molecular tools has helped us to better understand the biology, evolution, and biodiversity of mycorrhizal associations. Nuclear genome assemblies and gene annotations of 33 mycorrhizal fungal species are now available providing fascinating opportunities to deepen our understanding of the mycorrhizal lifestyle, the metabolic capabilities of these plant symbionts, the molecular dialogue between symbionts, and evolutionary adaptations across a range of mycorrhizal associations. Large-scale molecular surveys have provided novel insights into the diversity, spatial and temporal dynamics of mycorrhizal fungal communities. At the ecological level, network theory makes it possible to analyze interactions between plant-fungal partners as complex underground multi-species networks. Our analysis suggests that nestedness, modularity and specificity of mycorrhizal networks vary and depend on mycorrhizal type. Mechanistic models explaining partner choice, resource exchange, and coevolution in mycorrhizal associations have been developed and are being tested. This review ends with major frontiers for further research.
几乎所有陆地植物都与菌根真菌形成共生关系。这些地下真菌在陆地生态系统中发挥着关键作用,因为它们调节养分和碳循环,并影响土壤结构和生态系统多功能性。高达80%的植物氮和磷由菌根真菌提供,许多植物物种依靠这些共生体生长和存活。据估计,约有50000种真菌与约250000种植物形成菌根共生关系。高通量分子工具的发展帮助我们更好地理解菌根共生关系的生物学、进化和生物多样性。目前已有33种菌根真菌的核基因组组装和基因注释,为深化我们对菌根生活方式、这些植物共生体的代谢能力、共生体之间的分子对话以及一系列菌根共生关系的进化适应的理解提供了迷人的机会。大规模分子调查为菌根真菌群落的多样性、时空动态提供了新的见解。在生态层面,网络理论使我们能够将植物 - 真菌伙伴之间的相互作用分析为复杂的地下多物种网络。我们的分析表明,菌根网络的嵌套性、模块性和特异性各不相同,并取决于菌根类型。已经开发并正在测试解释菌根共生关系中伙伴选择、资源交换和共同进化的机制模型。本文综述最后阐述了进一步研究的主要前沿领域。