Suppr超能文献

采用同时多层波控并行采集的RARE/快速自旋回波成像

RARE/turbo spin echo imaging with Simultaneous Multislice Wave-CAIPI.

作者信息

Gagoski Borjan A, Bilgic Berkin, Eichner Cornelius, Bhat Himanshu, Grant P Ellen, Wald Lawrence L, Setsompop Kawin

机构信息

Fetal-Neonatal Neuroimaging & Developmental Science Center, Boston Children's Hospital, Boston, MA, USA.

Department of Radiology, Harvard Medical School, Boston, MA, USA.

出版信息

Magn Reson Med. 2015 Mar;73(3):929-938. doi: 10.1002/mrm.25615. Epub 2015 Feb 2.

Abstract

PURPOSE

To enable highly accelerated RARE/Turbo Spin Echo (TSE) imaging using Simultaneous MultiSlice (SMS) Wave-CAIPI acquisition with reduced g-factor penalty.

METHODS

SMS Wave-CAIPI incurs slice shifts across simultaneously excited slices while playing sinusoidal gradient waveforms during the readout of each encoding line. This results in an efficient k-space coverage that spreads aliasing in all three dimensions to fully harness the encoding power of coil sensitivities. The novel MultiPINS radiofrequency (RF) pulses dramatically reduce the power deposition of multiband (MB) refocusing pulse, thus allowing high MB factors within the Specific Absorption Rate (SAR) limit.

RESULTS

Wave-CAIPI acquisition with MultiPINS permits whole brain coverage with 1 mm isotropic resolution in 70 s at effective MB factor 13, with maximum and average g-factor penalties of gmax  = 1.34 and gavg  = 1.12, and without √R penalty. With blipped-CAIPI, the g-factor performance was degraded to gmax  = 3.24 and gavg  = 1.42; a 2.4-fold increase in gmax relative to Wave-CAIPI. At this MB factor, the SAR of the MultiBand and PINS pulses are 4.2 and 1.9 times that of the MultiPINS pulse, while the peak RF power are 19.4 and 3.9 times higher.

CONCLUSION

Combination of the two technologies, Wave-CAIPI and MultiPINS pulse, enables highly accelerated RARE/TSE imaging with low SNR penalty at reduced SAR.

摘要

目的

通过同时多层(SMS)Wave-CAIPI采集实现高加速快速自旋回波(RARE/Turbo Spin Echo,TSE)成像,并降低g因子惩罚。

方法

SMS Wave-CAIPI在每条编码线读出期间播放正弦梯度波形时,会在同时激发的层面间产生层面偏移。这导致了一种高效的k空间覆盖,将混叠分布在所有三个维度上,以充分利用线圈灵敏度的编码能力。新型的多针射频(RF)脉冲显著降低了多频段(MB)重聚焦脉冲的功率沉积,从而在比吸收率(SAR)限制内允许高MB因子。

结果

使用多针的Wave-CAIPI采集能够在有效MB因子为13时,于70秒内实现全脑覆盖,各向同性分辨率为1毫米,最大和平均g因子惩罚分别为gmax = 1.34和gavg = 1.12,且无√R惩罚。使用 blipped-CAIPI时,g因子性能降至gmax = 3.24和gavg = 1.42;相对于Wave-CAIPI,gmax增加了2.4倍。在此MB因子下,多频段和针状脉冲的SAR分别是多针脉冲的4.2倍和1.9倍,而峰值RF功率则分别高出19.4倍和3.9倍。

结论

Wave-CAIPI和多针脉冲这两种技术的结合,能够在降低SAR的情况下,实现具有低信噪比惩罚的高加速RARE/TSE成像。

相似文献

1
RARE/turbo spin echo imaging with Simultaneous Multislice Wave-CAIPI.
Magn Reson Med. 2015 Mar;73(3):929-938. doi: 10.1002/mrm.25615. Epub 2015 Feb 2.
3
A low power radiofrequency pulse for simultaneous multislice excitation and refocusing.
Magn Reson Med. 2014 Oct;72(4):949-58. doi: 10.1002/mrm.25389. Epub 2014 Aug 7.
5
Slice accelerated diffusion-weighted imaging at ultra-high field strength.
Magn Reson Med. 2014 Apr;71(4):1518-25. doi: 10.1002/mrm.24809. Epub 2013 Jun 24.
8
Highly accelerated EPI with wave encoding and multi-shot simultaneous multislice imaging.
Magn Reson Med. 2022 Sep;88(3):1180-1197. doi: 10.1002/mrm.29291. Epub 2022 Jun 9.
9
Wave-CAIPI for highly accelerated 3D imaging.
Magn Reson Med. 2015 Jun;73(6):2152-62. doi: 10.1002/mrm.25347. Epub 2014 Jul 1.
10
Wave-CAIPI for highly accelerated MP-RAGE imaging.
Magn Reson Med. 2018 Jan;79(1):401-406. doi: 10.1002/mrm.26649. Epub 2017 Feb 20.

引用本文的文献

1
A Physics-Based Algorithm to Universally Standardize Routinely Obtained Clinical T-Weighted Images.
Acad Radiol. 2024 Feb;31(2):582-595. doi: 10.1016/j.acra.2023.05.036. Epub 2023 Jul 6.
2
Highly accelerated intracranial time-of-flight magnetic resonance angiography using wave-encoding.
Magn Reson Med. 2023 Aug;90(2):432-443. doi: 10.1002/mrm.29647. Epub 2023 Apr 3.
5
Wave-Encoded Model-Based Deep Learning for Highly Accelerated Imaging with Joint Reconstruction.
Bioengineering (Basel). 2022 Nov 29;9(12):736. doi: 10.3390/bioengineering9120736.
7
Primary Multiparametric Quantitative Brain MRI: State-of-the-Art Relaxometric and Proton Density Mapping Techniques.
Radiology. 2022 Oct;305(1):5-18. doi: 10.1148/radiol.211519. Epub 2022 Aug 30.
8
Usefulness of Wave-CAIPI for Postcontrast 3D T1-SPACE in the Evaluation of Brain Metastases.
AJNR Am J Neuroradiol. 2022 Jun;43(6):857-863. doi: 10.3174/ajnr.A7520. Epub 2022 May 26.
10
Scout accelerated motion estimation and reduction (SAMER).
Magn Reson Med. 2022 Jan;87(1):163-178. doi: 10.1002/mrm.28971. Epub 2021 Aug 13.

本文引用的文献

1
A low power radiofrequency pulse for simultaneous multislice excitation and refocusing.
Magn Reson Med. 2014 Oct;72(4):949-58. doi: 10.1002/mrm.25389. Epub 2014 Aug 7.
2
Wave-CAIPI for highly accelerated 3D imaging.
Magn Reson Med. 2015 Jun;73(6):2152-62. doi: 10.1002/mrm.25347. Epub 2014 Jul 1.
3
Fast reconstruction for multichannel compressed sensing using a hierarchically semiseparable solver.
Magn Reson Med. 2015 Mar;73(3):1034-40. doi: 10.1002/mrm.25222. Epub 2014 Mar 17.
6
Arterial spin labeling with simultaneous multi-slice echo planar imaging.
Magn Reson Med. 2013 Dec;70(6):1500-6. doi: 10.1002/mrm.24994. Epub 2013 Oct 15.
7
Clinical evaluation of CAIPIRINHA: comparison against a GRAPPA standard.
J Magn Reson Imaging. 2014 Jan;39(1):189-94. doi: 10.1002/jmri.24105. Epub 2013 Oct 7.
8
Whole brain perfusion measurements using arterial spin labeling with multiband acquisition.
Magn Reson Med. 2013 Dec;70(6):1653-61. doi: 10.1002/mrm.24880. Epub 2013 Jul 22.
9
10
Slice accelerated diffusion-weighted imaging at ultra-high field strength.
Magn Reson Med. 2014 Apr;71(4):1518-25. doi: 10.1002/mrm.24809. Epub 2013 Jun 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验