Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.
Computer and Communication Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
Magn Reson Med. 2022 Feb;87(2):764-780. doi: 10.1002/mrm.29036. Epub 2021 Oct 2.
To develop a scan-specific model that estimates and corrects k-space errors made when reconstructing accelerated MRI data.
Scan-specific artifact reduction in k-space (SPARK) trains a convolutional-neural-network to estimate and correct k-space errors made by an input reconstruction technique by back-propagating from the mean-squared-error loss between an auto-calibration signal (ACS) and the input technique's reconstructed ACS. First, SPARK is applied to generalized autocalibrating partially parallel acquisitions (GRAPPA) and demonstrates improved robustness over other scan-specific models, such as robust artificial-neural-networks for k-space interpolation (RAKI) and residual-RAKI. Subsequent experiments demonstrate that SPARK synergizes with residual-RAKI to improve reconstruction performance. SPARK also improves reconstruction quality when applied to advanced acquisition and reconstruction techniques like 2D virtual coil (VC-) GRAPPA, 2D LORAKS, 3D GRAPPA without an integrated ACS region, and 2D/3D wave-encoded imaging.
SPARK yields SSIM improvement and 1.5 - 2× root mean squared error (RMSE) reduction when applied to GRAPPA and improves robustness to ACS size for various acceleration rates in comparison to other scan-specific techniques. When applied to advanced reconstruction techniques such as residual-RAKI, 2D VC-GRAPPA and LORAKS, SPARK achieves up to 20% RMSE improvement. SPARK with 3D GRAPPA also improves RMSE performance by ~2×, SSIM performance, and perceived image quality without a fully sampled ACS region. Finally, SPARK synergizes with non-Cartesian, 2D and 3D wave-encoding imaging by reducing RMSE between 20% and 25% and providing qualitative improvements.
SPARK synergizes with physics-based acquisition and reconstruction techniques to improve accelerated MRI by training scan-specific models to estimate and correct reconstruction errors in k-space.
开发一种特定于扫描的模型,用于估计和校正重建加速 MRI 数据时的 k 空间误差。
k 空间特定于扫描的伪影校正(SPARK)通过从自动校准信号(ACS)和输入技术重建的 ACS 之间的均方误差损失反向传播,训练卷积神经网络来估计和校正输入重建技术产生的 k 空间误差。首先,将 SPARK 应用于广义自动校准部分并行采集(GRAPPA),并展示了相对于其他特定于扫描的模型(如 k 空间插值的稳健人工神经网络(RAKI)和残差-RAKI)的更高鲁棒性。后续实验表明,SPARK 与残差-RAKI 协同作用可提高重建性能。当应用于先进的采集和重建技术,如二维虚拟线圈(VC-)GRAPPA、二维 LORAKS、无集成 ACS 区域的三维 GRAPPA 和二维/三维波编码成像时,SPARK 也可以提高重建质量。
SPARK 应用于 GRAPPA 时可提高 SSIM 并降低 1.5-2 倍均方根误差(RMSE),并与其他特定于扫描的技术相比,提高了对各种加速率的 ACS 大小的鲁棒性。当应用于高级重建技术,如残差-RAKI、二维 VC-GRAPPA 和 LORAKS 时,SPARK 可实现高达 20%的 RMSE 改善。具有三维 GRAPPA 的 SPARK 还可以改善 RMSE 性能约 2 倍、SSIM 性能和感知图像质量,而无需完全采样的 ACS 区域。最后,SPARK 通过在 20%至 25%之间降低 RMSE 并提供定性改善,与非笛卡尔、二维和三维波编码成像协同作用。
SPARK 通过训练特定于扫描的模型来估计和校正 k 空间中的重建误差,与基于物理的采集和重建技术协同作用,从而改善加速 MRI。