Robador Alberto, Jungbluth Sean P, LaRowe Douglas E, Bowers Robert M, Rappé Michael S, Amend Jan P, Cowen James P
NASA Astrobiology Institute, University of Hawaii Honolulu, HI, USA.
Hawaii Institute of Marine Biology, School of Ocean and Earth Science and Technology, University of Hawaii Kaneohe, HI, USA ; Department of Oceanography, School of Ocean and Earth Science and Technology, University of Hawaii Honolulu, HI, USA.
Front Microbiol. 2015 Jan 14;5:748. doi: 10.3389/fmicb.2014.00748. eCollection 2014.
The basaltic ocean crust is the largest aquifer system on Earth, yet the rates of biological activity in this environment are unknown. Low-temperature (<100°C) fluid samples were investigated from two borehole observatories in the Juan de Fuca Ridge (JFR) flank, representing a range of upper oceanic basement thermal and geochemical properties. Microbial sulfate reduction rates (SRR) were measured in laboratory incubations with (35)S-sulfate over a range of temperatures and the identity of the corresponding sulfate-reducing microorganisms (SRM) was studied by analyzing the sequence diversity of the functional marker dissimilatory (bi)sulfite reductase (dsrAB) gene. We found that microbial sulfate reduction was limited by the decreasing availability of organic electron donors in higher temperature, more altered fluids. Thermodynamic calculations indicate energetic constraints for metabolism, which together with relatively higher cell-specific SRR reveal increased maintenance requirements, consistent with novel species-level dsrAB phylotypes of thermophilic SRM. Our estimates suggest that microbially-mediated sulfate reduction may account for the removal of organic matter in fluids within the upper oceanic crust and underscore the potential quantitative impact of microbial processes in deep subsurface marine crustal fluids on marine and global biogeochemical carbon cycling.
玄武质洋壳是地球上最大的含水层系统,然而该环境中的生物活动速率尚不清楚。对来自胡安德富卡海岭(JFR)侧翼两个钻孔观测站的低温(<100°C)流体样本进行了研究,这些样本代表了一系列上层海洋基底的热性质和地球化学性质。在实验室中,于一系列温度下用³⁵S - 硫酸盐对微生物硫酸盐还原速率(SRR)进行了测量,并通过分析功能标记异化(双)亚硫酸盐还原酶(dsrAB)基因的序列多样性,研究了相应硫酸盐还原微生物(SRM)的特性。我们发现,在温度较高、变化较大的流体中,微生物硫酸盐还原受到有机电子供体可用性降低的限制。热力学计算表明了代谢的能量限制,这与相对较高的细胞特异性SRR一起揭示了维持需求的增加,这与嗜热SRM的新物种水平dsrAB系统发育型一致。我们的估计表明,微生物介导的硫酸盐还原可能导致上层洋壳内流体中有机物的去除,并强调了深海地下海洋地壳流体中微生物过程对海洋和全球生物地球化学碳循环的潜在定量影响。