Suppr超能文献

β-葡萄糖苷酶1与纤维素酶系统协同加速纤维素水解的特性研究

Characterization of β-glucosidase 1 accelerating cellulose hydrolysis with cellulase system.

作者信息

Baba Yutaro, Sumitani Jun-Ichi, Tani Shuji, Kawaguchi Takashi

机构信息

Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531 Japan.

出版信息

AMB Express. 2015 Jan 24;5(1):3. doi: 10.1186/s13568-014-0090-3. eCollection 2015 Dec.

Abstract

β-glucosidase 1 (AaBGL1), which promotes cellulose hydrolysis by cellulase system, was characterized and compared some properties to a commercially supplied orthologue in (AnBGL) to elucidate advantages of recombinant AaBGL1 (rAaBGL1) for synergistic effect on enzymes. Steady-state kinetic studies revealed that rAaBGL1 showed high catalytic efficiency towards β-linked glucooligosaccharides. Up to a degree of polymerization (DP) 3, rAaBGL1 prefered to hydrolyze β-1,3 linked glucooligosaccharides, but longer than DP 3, preferred β-1,4 glucooligosaccharides (up to DP 5). This result suggested that there were different formation for subsites in the catalytic cleft of AaBGL1 between β-1,3 and β-1,4 glucooligosaccharides, therefore rAaBGL1 preferred short chain of laminarioligosaccharides and long chain of cellooligosaccharides on hydrolysis. rAaBGL1 was more insensitive to glucose inhibition and more efficient to hydrolyze the one of major transglycosylation product, gentiobiose than AnBGL, resulting that rAaBGL1 completely hydrolyzed 5% cellobiose to glucose faster than AnBGL. These data indicate that AaBGL1 is valuable for the use of cellulosic biomass conversion.

摘要

β-葡萄糖苷酶1(AaBGL1)可促进纤维素酶系统对纤维素的水解作用,对其进行了特性分析,并将其某些特性与市售的同源物(AnBGL)进行了比较,以阐明重组AaBGL1(rAaBGL1)在酶协同效应方面的优势。稳态动力学研究表明,rAaBGL1对β-连接的低聚葡萄糖具有较高的催化效率。聚合度(DP)达到3时,rAaBGL1更倾向于水解β-1,3连接的低聚葡萄糖,但当DP超过3时,则更倾向于水解β-1,4低聚葡萄糖(直至DP为5)。这一结果表明,AaBGL1催化裂隙中β-1,3和β-1,4低聚葡萄糖的亚位点形成不同,因此rAaBGL1在水解时更倾向于短链的海带寡糖和长链的纤维二糖。rAaBGL1对葡萄糖抑制更不敏感,并且比AnBGL更有效地水解主要转糖基化产物之一的龙胆二糖,结果是rAaBGL1比AnBGL更快地将5%的纤维二糖完全水解为葡萄糖。这些数据表明,AaBGL1在纤维素生物质转化应用中具有重要价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c8ce/4883179/29ba895b8302/13568_2014_90_Fig1_HTML.jpg

相似文献

1
Characterization of β-glucosidase 1 accelerating cellulose hydrolysis with cellulase system.
AMB Express. 2015 Jan 24;5(1):3. doi: 10.1186/s13568-014-0090-3. eCollection 2015 Dec.
2
Site-saturation mutagenesis for β-glucosidase 1 from Aspergillus aculeatus to accelerate the saccharification of alkaline-pretreated bagasse.
Appl Microbiol Biotechnol. 2016 Dec;100(24):10495-10507. doi: 10.1007/s00253-016-7726-y. Epub 2016 Jul 21.
9
A high performance Trichoderma reesei strain that reveals the importance of xylanase III in cellulosic biomass conversion.
Enzyme Microb Technol. 2016 Jan;82:89-95. doi: 10.1016/j.enzmictec.2015.08.019. Epub 2015 Sep 2.

引用本文的文献

4
A component of the septation initiation network complex, AaSepM, is involved in multiple cellulose-responsive signaling pathways in Aspergillus aculeatus.
Appl Microbiol Biotechnol. 2021 Feb;105(4):1535-1546. doi: 10.1007/s00253-021-11110-7. Epub 2021 Jan 22.
5
Crystal Structure of a GH3 β-Glucosidase from the Thermophilic Fungus .
Int J Mol Sci. 2019 Nov 27;20(23):5962. doi: 10.3390/ijms20235962.
6
An ascomycota coculture in batch bioreactor is better than polycultures for cellulase production.
Folia Microbiol (Praha). 2018 Jul;63(4):467-478. doi: 10.1007/s12223-018-0588-1. Epub 2018 Feb 8.
8
Production of the versatile cellulase for cellulose bioconversion and cellulase inducer synthesis by genetic improvement of .
Biotechnol Biofuels. 2017 Nov 15;10:272. doi: 10.1186/s13068-017-0963-1. eCollection 2017.
9
Genomics insights into different cellobiose hydrolysis activities in two Trichoderma hamatum strains.
Microb Cell Fact. 2017 Apr 19;16(1):63. doi: 10.1186/s12934-017-0680-2.
10
When substrate inhibits and inhibitor activates: implications of β-glucosidases.
Biotechnol Biofuels. 2017 Jan 3;10:7. doi: 10.1186/s13068-016-0690-z. eCollection 2017.

本文引用的文献

1
Effect of pretreatment on saccharification of sugarcane bagasse by complex and simple enzyme mixtures.
Bioresour Technol. 2013 Nov;148:105-13. doi: 10.1016/j.biortech.2013.08.099. Epub 2013 Aug 27.
3
Understanding of alkaline pretreatment parameters for corn stover enzymatic saccharification.
Biotechnol Biofuels. 2013 Jan 28;6(1):8. doi: 10.1186/1754-6834-6-8.
4
Role and significance of beta-glucosidases in the hydrolysis of cellulose for bioethanol production.
Bioresour Technol. 2013 Jan;127:500-7. doi: 10.1016/j.biortech.2012.09.012. Epub 2012 Sep 14.
7
Identification, cloning, and characterization of β-glucosidase from Ustilago esculenta.
Appl Microbiol Biotechnol. 2012 Mar;93(5):1989-98. doi: 10.1007/s00253-011-3538-2. Epub 2011 Aug 18.
9
Biochemical characterization of Magnaporthe oryzae β-glucosidases for efficient β-glucan hydrolysis.
Appl Microbiol Biotechnol. 2011 Aug;91(4):1073-82. doi: 10.1007/s00253-011-3340-1. Epub 2011 May 29.
10
Discovery and characterization of a distinctive exo-1,3/1,4-{beta}-glucanase from the marine bacterium Pseudoalteromonas sp. strain BB1.
Appl Environ Microbiol. 2010 Oct;76(20):6760-8. doi: 10.1128/AEM.00758-10. Epub 2010 Aug 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验