Suppr超能文献

利用天冬氨酸突变酶 1 从aspergillus aculeatus 中进行定点饱和突变,以加速碱性预处理蔗渣的糖化。

Site-saturation mutagenesis for β-glucosidase 1 from Aspergillus aculeatus to accelerate the saccharification of alkaline-pretreated bagasse.

机构信息

Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan.

出版信息

Appl Microbiol Biotechnol. 2016 Dec;100(24):10495-10507. doi: 10.1007/s00253-016-7726-y. Epub 2016 Jul 21.

Abstract

Aspergillus aculeatus β-glucosidase 1 (AaBGL1) is one of the best cellobiose hydrolytic enzymes without transglycosylation products, among β-glucosidase from various origins, for use in cellulosic biomass conversion with Trichoderma cellulases. However, in our previous report, it was demonstrated that AaBGL1 has lower catalytic efficiency toward cellobiose, which is a major end product from cellulosic biomasses by Trichoderma reesei cellulases, than do gentiobiose and laminaribiose. Thus, we expected that there is room to enhance cellobiose hydrolytic activity of AaBGL1 by increasing catalytic efficiency (k /K ) up to that of gentiobiose or laminaribiose for accelerating the saccharification of cellulosic biomasses, and we performed site-saturation mutagenesis targeting nine amino acids supposed to constitute subsite +1 of AaBGL1. We successfully isolated a mutant AaBGL1 (Q201E) having 2.7 times higher k /K toward cellobiose than the WT enzyme. Q201E showed higher activity toward cellotriose and cellotetraose but lower activity toward gentiobiose and laminaribiose than WT. Kinetic analysis of various Q201 mutants toward cellobiose, gentiobiose, and laminaribiose revealed that only the Q201E mutation resulted in improved k /K toward cellobiose. We demonstrated that side chain length and the nondissociated form of the carboxyl group at E201 in Q201E were required for enhancing the activity toward cellooligosaccharides through supporting nucleophile attack by D280 via changing catalytic environment by pH profile of kinetic parameters and mutation analyses. Moreover, we also demonstrated that Q201E produced more effective synergy with cellulases and xylanases than WT in the saccharification of alkaline-pretreated bagasse.

摘要

棘孢曲霉β-葡萄糖苷酶 1(AaBGL1)是各种来源的β-葡萄糖苷酶中最适合用于与里氏木霉纤维素酶转化纤维素生物质的无转糖苷产物的纤维二糖水解酶之一。然而,在我们之前的报告中,已经证明 AaBGL1 对纤维二糖的催化效率较低,而纤维二糖是里氏木霉纤维素酶作用于纤维素生物质的主要终产物。相比之下,龙胆二糖和纤维二糖的催化效率更高。因此,我们期望通过提高催化效率(k / K )来提高 AaBGL1 对纤维二糖的水解活性,使其达到龙胆二糖或纤维二糖的水平,从而加速纤维素生物质的糖化。我们针对构成 AaBGL1 底物结合 +1 位的九个氨基酸进行了定点饱和突变。我们成功分离到一个突变体 AaBGL1(Q201E),它对纤维二糖的 k / K 比野生型酶高 2.7 倍。Q201E 对纤维三糖和纤维四糖的活性高于野生型,但对龙胆二糖和纤维二糖的活性低于野生型。对各种 Q201 突变体的动力学分析表明,只有 Q201E 突变导致纤维二糖的 k / K 提高。我们证明,在 Q201E 中,E201 侧链长度和羧基的非离解形式对于通过改变动力学参数的 pH 曲线和突变分析来改变催化环境,从而支持 D280 的亲核攻击,从而提高对纤维寡糖的活性是必需的。此外,我们还证明,与野生型相比,Q201E 在碱性预处理蔗渣的糖化过程中与纤维素酶和木聚糖酶产生了更有效的协同作用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验