Wang Ge, Fan Feng-Lei
Department of Biomedical Engineering, Department of Electrical, Computer, and Systems Engineering, Department of Computer Science, Center for Computational Innovations, Biomedical Imaging Center, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA.
Department of Data Science, City University of Hong Kong, Kowloon, Hong Kong.
Patterns (N Y). 2025 Apr 22;6(8):101231. doi: 10.1016/j.patter.2025.101231. eCollection 2025 Aug 8.
The recent awarding of the Nobel Prize in Physics to Geoffrey E. Hinton and John J. Hopfield highlights their profound impact on artificial neural networks. In this perspective, we explore how their foundational insights can drive the advancement of next-generation artificial intelligence (AI) models. We propose expanding beyond conventional architectures by introducing dimensionality through intra-layer links and dynamics via feedback loops. Network height and additional dimensions, alongside traditional width and depth, enhance learning capabilities, while entangled loops across scales induce emergent behaviors akin to phase transitions in physics. We discuss how these principles extend beyond transformers, fostering a new paradigm of intelligence inspired by physics-driven models and biological cognition mechanisms.
杰弗里·E·辛顿(Geoffrey E. Hinton)和约翰·J·霍普菲尔德(John J. Hopfield)近期获得诺贝尔物理学奖,这凸显了他们对人工神经网络的深远影响。从这个角度出发,我们探讨他们的基础性见解如何推动下一代人工智能(AI)模型的发展。我们建议通过层内链接引入维度以及通过反馈回路引入动态性,从而超越传统架构。网络高度和额外维度与传统的宽度和深度一起,增强了学习能力,而跨尺度的纠缠回路会引发类似于物理相变的涌现行为。我们讨论了这些原理如何超越变压器架构,促成一种受物理驱动模型和生物认知机制启发的新智能范式。