Daloso Danilo M, Müller Karolin, Obata Toshihiro, Florian Alexandra, Tohge Takayuki, Bottcher Alexandra, Riondet Christophe, Bariat Laetitia, Carrari Fernando, Nunes-Nesi Adriano, Buchanan Bob B, Reichheld Jean-Philippe, Araújo Wagner L, Fernie Alisdair R
Max-Planck-Institut für Molekulare Pflanzenphysiologie,14476 Potsdam-Golm, Germany; Max Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, MG, Brazil;
Max-Planck-Institut für Molekulare Pflanzenphysiologie,14476 Potsdam-Golm, Germany;
Proc Natl Acad Sci U S A. 2015 Mar 17;112(11):E1392-400. doi: 10.1073/pnas.1424840112. Epub 2015 Feb 2.
Plant mitochondria have a fully operational tricarboxylic acid (TCA) cycle that plays a central role in generating ATP and providing carbon skeletons for a range of biosynthetic processes in both heterotrophic and photosynthetic tissues. The cycle enzyme-encoding genes have been well characterized in terms of transcriptional and effector-mediated regulation and have also been subjected to reverse genetic analysis. However, despite this wealth of attention, a central question remains unanswered: "What regulates flux through this pathway in vivo?" Previous proteomic experiments with Arabidopsis discussed below have revealed that a number of mitochondrial enzymes, including members of the TCA cycle and affiliated pathways, harbor thioredoxin (TRX)-binding sites and are potentially redox-regulated. We have followed up on this possibility and found TRX to be a redox-sensitive mediator of TCA cycle flux. In this investigation, we first characterized, at the enzyme and metabolite levels, mutants of the mitochondrial TRX pathway in Arabidopsis: the NADP-TRX reductase a and b double mutant (ntra ntrb) and the mitochondrially located thioredoxin o1 (trxo1) mutant. These studies were followed by a comparative evaluation of the redistribution of isotopes when (13)C-glucose, (13)C-malate, or (13)C-pyruvate was provided as a substrate to leaves of mutant or WT plants. In a complementary approach, we evaluated the in vitro activities of a range of TCA cycle and associated enzymes under varying redox states. The combined dataset suggests that TRX may deactivate both mitochondrial succinate dehydrogenase and fumarase and activate the cytosolic ATP-citrate lyase in vivo, acting as a direct regulator of carbon flow through the TCA cycle and providing a mechanism for the coordination of cellular function.
植物线粒体具有完整运行的三羧酸(TCA)循环,该循环在产生ATP以及为异养和光合组织中的一系列生物合成过程提供碳骨架方面发挥着核心作用。循环酶编码基因在转录和效应物介导的调控方面已得到充分表征,并且也已进行了反向遗传分析。然而,尽管受到了如此多的关注,但一个核心问题仍然没有答案:“在体内是什么调节了这条途径的通量?”下面讨论的先前对拟南芥的蛋白质组学实验表明,许多线粒体酶,包括TCA循环及其附属途径的成员,都含有硫氧还蛋白(TRX)结合位点,并且可能受到氧化还原调节。我们对这种可能性进行了跟进,发现TRX是TCA循环通量的氧化还原敏感介质。在本研究中,我们首先在酶和代谢物水平上对拟南芥线粒体TRX途径的突变体进行了表征:NADP-TRX还原酶a和b双突变体(ntra ntrb)以及位于线粒体中的硫氧还蛋白o1(trxo1)突变体。这些研究之后,当向突变体或野生型植物的叶片提供(13)C-葡萄糖、(13)C-苹果酸或(13)C-丙酮酸作为底物时,对同位素的重新分布进行了比较评估。在一种补充方法中,我们评估了一系列TCA循环及相关酶在不同氧化还原状态下的体外活性。综合数据集表明,TRX可能在体内使线粒体琥珀酸脱氢酶和延胡索酸酶失活,并激活胞质ATP-柠檬酸裂解酶,作为碳流经TCA循环的直接调节剂,并为细胞功能的协调提供一种机制。