Suppr超能文献

超氧化物生成的位置如何影响β细胞对一氧化氮的反应。

How the location of superoxide generation influences the β-cell response to nitric oxide.

作者信息

Broniowska Katarzyna A, Oleson Bryndon J, McGraw Jennifer, Naatz Aaron, Mathews Clayton E, Corbett John A

机构信息

From the Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226 and

From the Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226 and.

出版信息

J Biol Chem. 2015 Mar 20;290(12):7952-60. doi: 10.1074/jbc.M114.627869. Epub 2015 Feb 3.

Abstract

Cytokines impair the function and decrease the viability of insulin-producing β-cells by a pathway that requires the expression of inducible nitric oxide synthase (iNOS) and generation of high levels of nitric oxide. In addition to nitric oxide, excessive formation of reactive oxygen species, such as superoxide and hydrogen peroxide, has been shown to cause β-cell damage. Although the reaction of nitric oxide with superoxide results in the formation of peroxynitrite, we have shown that β-cells do not have the capacity to produce this powerful oxidant in response to cytokines. When β-cells are forced to generate peroxynitrite using nitric oxide donors and superoxide-generating redox cycling agents, superoxide scavenges nitric oxide and prevents the inhibitory and destructive actions of nitric oxide on mitochondrial oxidative metabolism and β-cell viability. In this study, we show that the β-cell response to nitric oxide is regulated by the location of superoxide generation. Nitric oxide freely diffuses through cell membranes, and it reacts with superoxide produced within cells and in the extracellular space, generating peroxynitrite. However, only when it is produced within cells does superoxide attenuate nitric oxide-induced mitochondrial dysfunction, gene expression, and toxicity. These findings suggest that the location of radical generation and the site of radical reactions are key determinants in the functional response of β-cells to reactive oxygen species and reactive nitrogen species. Although nitric oxide is freely diffusible, its biological function can be controlled by the local generation of superoxide, such that when this reaction occurs within β-cells, superoxide protects β-cells by scavenging nitric oxide.

摘要

细胞因子通过一条需要诱导型一氧化氮合酶(iNOS)表达和产生高水平一氧化氮的途径损害胰岛素分泌β细胞的功能并降低其活力。除一氧化氮外,超氧化物和过氧化氢等活性氧物质的过度生成也已被证明会导致β细胞损伤。尽管一氧化氮与超氧化物反应会生成过氧亚硝酸盐,但我们已经表明β细胞没有能力在细胞因子刺激下产生这种强氧化剂。当使用一氧化氮供体和产生超氧化物的氧化还原循环剂迫使β细胞生成过氧亚硝酸盐时,超氧化物会清除一氧化氮并防止一氧化氮对线粒体氧化代谢和β细胞活力的抑制及破坏作用。在本研究中,我们表明β细胞对一氧化氮的反应受超氧化物生成位置的调节。一氧化氮可自由穿过细胞膜,并与细胞内和细胞外空间产生的超氧化物反应,生成过氧亚硝酸盐。然而,只有当超氧化物在细胞内产生时,它才会减轻一氧化氮诱导的线粒体功能障碍、基因表达和毒性。这些发现表明,自由基生成的位置和自由基反应的位点是β细胞对活性氧和活性氮功能反应的关键决定因素。尽管一氧化氮可自由扩散,但其生物学功能可通过局部生成超氧化物来控制,这样当这种反应在β细胞内发生时,超氧化物通过清除一氧化氮来保护β细胞。

相似文献

1
How the location of superoxide generation influences the β-cell response to nitric oxide.
J Biol Chem. 2015 Mar 20;290(12):7952-60. doi: 10.1074/jbc.M114.627869. Epub 2015 Feb 3.
2
Do β-cells generate peroxynitrite in response to cytokine treatment?
J Biol Chem. 2013 Dec 20;288(51):36567-78. doi: 10.1074/jbc.M113.522243. Epub 2013 Nov 5.
5
Superoxide production by mitochondria in the presence of nitric oxide forms peroxynitrite.
Biochem Mol Biol Int. 1996 Oct;40(3):527-34. doi: 10.1080/15216549600201103.
7
Role of reactive oxygen species in cell toxicity.
Toxicol Lett. 1992 Dec;64-65 Spec No:547-51. doi: 10.1016/0378-4274(92)90230-h.

引用本文的文献

1
Oxidative stress and impaired insulin secretion in cystic fibrosis pig pancreas.
Adv Redox Res. 2022 Jul;5. doi: 10.1016/j.arres.2022.100040. Epub 2022 Jun 9.
2
Deletion of Thioredoxin Reductase Disrupts Redox Homeostasis and Impairs β-Cell Function.
Function (Oxf). 2022 Jul 4;3(4):zqac034. doi: 10.1093/function/zqac034. eCollection 2022.
3
The Role of Thioredoxin/Peroxiredoxin in the β-Cell Defense Against Oxidative Damage.
Front Endocrinol (Lausanne). 2021 Sep 7;12:718235. doi: 10.3389/fendo.2021.718235. eCollection 2021.
4
The Role of Oxidative Stress in Pancreatic β Cell Dysfunction in Diabetes.
Int J Mol Sci. 2021 Feb 3;22(4):1509. doi: 10.3390/ijms22041509.
5
Peroxiredoxin 1 plays a primary role in protecting pancreatic β-cells from hydrogen peroxide and peroxynitrite.
Am J Physiol Regul Integr Comp Physiol. 2020 May 1;318(5):R1004-R1013. doi: 10.1152/ajpregu.00011.2020. Epub 2020 Apr 15.
7
Can insulin secreting pancreatic β-cells provide novel insights into the metabolic regulation of the DNA damage response?
Biochem Pharmacol. 2020 Jun;176:113907. doi: 10.1016/j.bcp.2020.113907. Epub 2020 Mar 12.
8
The Role of Metabolic Flexibility in the Regulation of the DNA Damage Response by Nitric Oxide.
Mol Cell Biol. 2019 Aug 27;39(18). doi: 10.1128/MCB.00153-19. Print 2019 Sep 15.
9
Pancreatic β-cells detoxify HO through the peroxiredoxin/thioredoxin antioxidant system.
J Biol Chem. 2019 Mar 29;294(13):4843-4853. doi: 10.1074/jbc.RA118.006219. Epub 2019 Jan 18.

本文引用的文献

2
Luminol-based chemiluminescent signals: clinical and non-clinical application and future uses.
Appl Biochem Biotechnol. 2014 May;173(2):333-55. doi: 10.1007/s12010-014-0850-1. Epub 2014 Apr 22.
3
Do β-cells generate peroxynitrite in response to cytokine treatment?
J Biol Chem. 2013 Dec 20;288(51):36567-78. doi: 10.1074/jbc.M113.522243. Epub 2013 Nov 5.
5
Reactive oxygen species mediate Cr(VI)-induced carcinogenesis through PI3K/AKT-dependent activation of GSK-3β/β-catenin signaling.
Toxicol Appl Pharmacol. 2013 Sep 1;271(2):239-48. doi: 10.1016/j.taap.2013.04.036. Epub 2013 May 22.
6
Differential responses of pancreatic β-cells to ROS and RNS.
Am J Physiol Endocrinol Metab. 2013 Mar 15;304(6):E614-22. doi: 10.1152/ajpendo.00424.2012. Epub 2013 Jan 15.
8
Cytokine-mediated β-cell damage in PARP-1-deficient islets.
Am J Physiol Endocrinol Metab. 2012 Jul 15;303(2):E172-9. doi: 10.1152/ajpendo.00055.2012. Epub 2012 Apr 24.
9
Mitochondria and diabetes. An intriguing pathogenetic role.
Adv Exp Med Biol. 2012;942:235-47. doi: 10.1007/978-94-007-2869-1_10.
10
Global profiling of reactive oxygen and nitrogen species in biological systems: high-throughput real-time analyses.
J Biol Chem. 2012 Jan 27;287(5):2984-95. doi: 10.1074/jbc.M111.309062. Epub 2011 Dec 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验