Shaw Jeffrey J, Berbasova Tetyana, Sasaki Tomoaki, Jefferson-George Kyra, Spakowicz Daniel J, Dunican Brian F, Portero Carolina E, Narváez-Trujillo Alexandra, Strobel Scott A
From the Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520.
the Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, and.
J Biol Chem. 2015 Mar 27;290(13):8511-26. doi: 10.1074/jbc.M114.636159. Epub 2015 Feb 3.
Terpenes are an important and diverse class of secondary metabolites widely produced by fungi. Volatile compound screening of a fungal endophyte collection revealed a number of isolates in the family Xylariaceae, producing a series of terpene molecules, including 1,8-cineole. This compound is a commercially important component of eucalyptus oil used in pharmaceutical applications and has been explored as a potential biofuel additive. The genes that produce terpene molecules, such as 1,8-cineole, have been little explored in fungi, providing an opportunity to explore the biosynthetic origin of these compounds. Through genome sequencing of cineole-producing isolate E7406B, we were able to identify 11 new terpene synthase genes. Expressing a subset of these genes in Escherichia coli allowed identification of the hyp3 gene, responsible for 1,8-cineole biosynthesis, the first monoterpene synthase discovered in fungi. In a striking example of convergent evolution, mutational analysis of this terpene synthase revealed an active site asparagine critical for water capture and specificity during cineole synthesis, the same mechanism used in an unrelated plant homologue. These studies have provided insight into the evolutionary relationship of fungal terpene synthases to those in plants and bacteria and further established fungi as a relatively untapped source of this important and diverse class of compounds.
萜类化合物是真菌广泛产生的一类重要且多样的次生代谢物。对真菌内生菌库进行挥发性化合物筛选时,在炭角菌科中发现了一些分离株,它们能产生一系列萜类分子,包括1,8-桉叶素。这种化合物是用于制药的桉叶油的一种重要商业成分,并且已被探索作为一种潜在的生物燃料添加剂。在真菌中,产生萜类分子(如1,8-桉叶素)的基因很少被研究,这为探索这些化合物的生物合成起源提供了机会。通过对产生桉叶素的分离株E7406B进行基因组测序,我们能够鉴定出11个新的萜类合酶基因。在大肠杆菌中表达这些基因的一个子集,使得负责1,8-桉叶素生物合成的hyp3基因得以鉴定,这是在真菌中发现的首个单萜合酶。在一个引人注目的趋同进化例子中,对这种萜类合酶的突变分析揭示了一个在桉叶素合成过程中对水捕获和特异性至关重要的活性位点天冬酰胺,这与一种不相关的植物同源物所使用的机制相同。这些研究为真菌萜类合酶与植物和细菌中的萜类合酶之间的进化关系提供了见解,并进一步确立了真菌是这类重要且多样的化合物的一个相对未被开发的来源。