Suppr超能文献

从炭团菌属真菌中鉴定出一种与植物合酶具有共同特异性决定因素的真菌1,8-桉叶素合酶。

Identification of a fungal 1,8-cineole synthase from Hypoxylon sp. with specificity determinants in common with the plant synthases.

作者信息

Shaw Jeffrey J, Berbasova Tetyana, Sasaki Tomoaki, Jefferson-George Kyra, Spakowicz Daniel J, Dunican Brian F, Portero Carolina E, Narváez-Trujillo Alexandra, Strobel Scott A

机构信息

From the Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520.

the Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, and.

出版信息

J Biol Chem. 2015 Mar 27;290(13):8511-26. doi: 10.1074/jbc.M114.636159. Epub 2015 Feb 3.

Abstract

Terpenes are an important and diverse class of secondary metabolites widely produced by fungi. Volatile compound screening of a fungal endophyte collection revealed a number of isolates in the family Xylariaceae, producing a series of terpene molecules, including 1,8-cineole. This compound is a commercially important component of eucalyptus oil used in pharmaceutical applications and has been explored as a potential biofuel additive. The genes that produce terpene molecules, such as 1,8-cineole, have been little explored in fungi, providing an opportunity to explore the biosynthetic origin of these compounds. Through genome sequencing of cineole-producing isolate E7406B, we were able to identify 11 new terpene synthase genes. Expressing a subset of these genes in Escherichia coli allowed identification of the hyp3 gene, responsible for 1,8-cineole biosynthesis, the first monoterpene synthase discovered in fungi. In a striking example of convergent evolution, mutational analysis of this terpene synthase revealed an active site asparagine critical for water capture and specificity during cineole synthesis, the same mechanism used in an unrelated plant homologue. These studies have provided insight into the evolutionary relationship of fungal terpene synthases to those in plants and bacteria and further established fungi as a relatively untapped source of this important and diverse class of compounds.

摘要

萜类化合物是真菌广泛产生的一类重要且多样的次生代谢物。对真菌内生菌库进行挥发性化合物筛选时,在炭角菌科中发现了一些分离株,它们能产生一系列萜类分子,包括1,8-桉叶素。这种化合物是用于制药的桉叶油的一种重要商业成分,并且已被探索作为一种潜在的生物燃料添加剂。在真菌中,产生萜类分子(如1,8-桉叶素)的基因很少被研究,这为探索这些化合物的生物合成起源提供了机会。通过对产生桉叶素的分离株E7406B进行基因组测序,我们能够鉴定出11个新的萜类合酶基因。在大肠杆菌中表达这些基因的一个子集,使得负责1,8-桉叶素生物合成的hyp3基因得以鉴定,这是在真菌中发现的首个单萜合酶。在一个引人注目的趋同进化例子中,对这种萜类合酶的突变分析揭示了一个在桉叶素合成过程中对水捕获和特异性至关重要的活性位点天冬酰胺,这与一种不相关的植物同源物所使用的机制相同。这些研究为真菌萜类合酶与植物和细菌中的萜类合酶之间的进化关系提供了见解,并进一步确立了真菌是这类重要且多样的化合物的一个相对未被开发的来源。

相似文献

1
Identification of a fungal 1,8-cineole synthase from Hypoxylon sp. with specificity determinants in common with the plant synthases.
J Biol Chem. 2015 Mar 27;290(13):8511-26. doi: 10.1074/jbc.M114.636159. Epub 2015 Feb 3.
2
Cloning, functional characterization and genomic organization of 1,8-cineole synthases from Lavandula.
Plant Mol Biol. 2012 Jul;79(4-5):393-411. doi: 10.1007/s11103-012-9920-3. Epub 2012 May 17.
3
Characterization of four endophytic fungi as potential consolidated bioprocessing hosts for conversion of lignocellulose into advanced biofuels.
Appl Microbiol Biotechnol. 2017 Mar;101(6):2603-2618. doi: 10.1007/s00253-017-8091-1. Epub 2017 Jan 12.
5
Regulation of simultaneous synthesis of floral scent terpenoids by the 1,8-cineole synthase of Nicotiana suaveolens.
Plant Mol Biol. 2007 Sep;65(1-2):107-24. doi: 10.1007/s11103-007-9202-7. Epub 2007 Jul 5.
6
Hypoxylon sp., an endophyte of Persea indica, producing 1,8-cineole and other bioactive volatiles with fuel potential.
Microb Ecol. 2010 Nov;60(4):903-14. doi: 10.1007/s00248-010-9759-6. Epub 2010 Oct 17.
9
The α-Terpineol to 1,8-Cineole Cyclization Reaction of Tobacco Terpene Synthases.
Plant Physiol. 2016 Dec;172(4):2120-2131. doi: 10.1104/pp.16.01378. Epub 2016 Oct 11.

引用本文的文献

1
Diversity and functions of fungal VOCs with special reference to the multiple bioactivities of the mushroom alcohol.
Mycology. 2025 Feb 2;16(3):1011-1022. doi: 10.1080/21501203.2025.2453717. eCollection 2025.
2
Propagation of [D1,2]-type spliceosomal twin introns (stwintrons) in and fungi.
Microbiol Spectr. 2025 Sep 2;13(9):e0292624. doi: 10.1128/spectrum.02926-24. Epub 2025 Aug 8.
3
A high-quality chromosome-level genome assembly of Eucalyptus globulus Labill.
Sci Data. 2025 Jul 1;12(1):1093. doi: 10.1038/s41597-025-05421-x.
5
Incorporating omics-based tools into endophytic fungal research.
Biotechnol Notes. 2023 Dec 31;5:1-7. doi: 10.1016/j.biotno.2023.12.006. eCollection 2024.
7
Genome Mining of Fungal Unique Trichodiene Synthase-like Sesquiterpene Synthases.
J Fungi (Basel). 2024 May 13;10(5):350. doi: 10.3390/jof10050350.
9
Overview of fungal terpene synthases and their regulation.
World J Microbiol Biotechnol. 2023 May 12;39(7):194. doi: 10.1007/s11274-023-03635-y.

本文引用的文献

1
Biosynthesis and genomic analysis of medium-chain hydrocarbon production by the endophytic fungal isolate Nigrograna mackinnonii E5202H.
Appl Microbiol Biotechnol. 2015 Apr;99(8):3715-28. doi: 10.1007/s00253-014-6206-5. Epub 2015 Feb 12.
3
Mechanistic insights from the binding of substrate and carbocation intermediate analogues to aristolochene synthase.
Biochemistry. 2013 Aug 13;52(32):5441-53. doi: 10.1021/bi400691v. Epub 2013 Aug 1.
4
Metabolic engineering of Escherichia coli for limonene and perillyl alcohol production.
Metab Eng. 2013 Sep;19:33-41. doi: 10.1016/j.ymben.2013.05.004. Epub 2013 May 29.
5
Metabolic engineering of Escherichia coli for the biosynthesis of alpha-pinene.
Biotechnol Biofuels. 2013 Apr 30;6(1):60. doi: 10.1186/1754-6834-6-60.
6
High-throughput screening for terpene-synthase-cyclization activity and directed evolution of a terpene synthase.
Angew Chem Int Ed Engl. 2013 May 17;52(21):5571-4. doi: 10.1002/anie.201301362. Epub 2013 Mar 26.
9
Discovery and characterization of terpenoid biosynthetic pathways of fungi.
Methods Enzymol. 2012;515:83-105. doi: 10.1016/B978-0-12-394290-6.00005-7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验