Hines Keegan E, Bankston John R, Aldrich Richard W
Center for Learning and Memory and Department of Neuroscience, University of Texas at Austin, Austin, Texas.
Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, Washington.
Biophys J. 2015 Feb 3;108(3):540-56. doi: 10.1016/j.bpj.2014.12.016.
The ability to measure the properties of proteins at the single-molecule level offers an unparalleled glimpse into biological systems at the molecular scale. The interpretation of single-molecule time series has often been rooted in statistical mechanics and the theory of Markov processes. While existing analysis methods have been useful, they are not without significant limitations including problems of model selection and parameter nonidentifiability. To address these challenges, we introduce the use of nonparametric Bayesian inference for the analysis of single-molecule time series. These methods provide a flexible way to extract structure from data instead of assuming models beforehand. We demonstrate these methods with applications to several diverse settings in single-molecule biophysics. This approach provides a well-constrained and rigorously grounded method for determining the number of biophysical states underlying single-molecule data.
在单分子水平上测量蛋白质特性的能力,为在分子尺度上深入了解生物系统提供了无与伦比的视角。单分子时间序列的解释通常基于统计力学和马尔可夫过程理论。虽然现有的分析方法很有用,但它们并非没有重大局限性,包括模型选择和参数不可识别性问题。为应对这些挑战,我们引入了非参数贝叶斯推理用于单分子时间序列分析。这些方法提供了一种从数据中提取结构的灵活方式,而不是预先假设模型。我们通过将这些方法应用于单分子生物物理学的几个不同场景来进行演示。这种方法为确定单分子数据背后的生物物理状态数量提供了一种约束良好且有严格依据的方法。