Suppr超能文献

通过非参数贝叶斯推理分析单分子时间序列。

Analyzing single-molecule time series via nonparametric Bayesian inference.

作者信息

Hines Keegan E, Bankston John R, Aldrich Richard W

机构信息

Center for Learning and Memory and Department of Neuroscience, University of Texas at Austin, Austin, Texas.

Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, Washington.

出版信息

Biophys J. 2015 Feb 3;108(3):540-56. doi: 10.1016/j.bpj.2014.12.016.

Abstract

The ability to measure the properties of proteins at the single-molecule level offers an unparalleled glimpse into biological systems at the molecular scale. The interpretation of single-molecule time series has often been rooted in statistical mechanics and the theory of Markov processes. While existing analysis methods have been useful, they are not without significant limitations including problems of model selection and parameter nonidentifiability. To address these challenges, we introduce the use of nonparametric Bayesian inference for the analysis of single-molecule time series. These methods provide a flexible way to extract structure from data instead of assuming models beforehand. We demonstrate these methods with applications to several diverse settings in single-molecule biophysics. This approach provides a well-constrained and rigorously grounded method for determining the number of biophysical states underlying single-molecule data.

摘要

在单分子水平上测量蛋白质特性的能力,为在分子尺度上深入了解生物系统提供了无与伦比的视角。单分子时间序列的解释通常基于统计力学和马尔可夫过程理论。虽然现有的分析方法很有用,但它们并非没有重大局限性,包括模型选择和参数不可识别性问题。为应对这些挑战,我们引入了非参数贝叶斯推理用于单分子时间序列分析。这些方法提供了一种从数据中提取结构的灵活方式,而不是预先假设模型。我们通过将这些方法应用于单分子生物物理学的几个不同场景来进行演示。这种方法为确定单分子数据背后的生物物理状态数量提供了一种约束良好且有严格依据的方法。

相似文献

1
Analyzing single-molecule time series via nonparametric Bayesian inference.
Biophys J. 2015 Feb 3;108(3):540-56. doi: 10.1016/j.bpj.2014.12.016.
2
A primer on Bayesian inference for biophysical systems.
Biophys J. 2015 May 5;108(9):2103-13. doi: 10.1016/j.bpj.2015.03.042.
3
Bayesian nonparametric inference for panel count data with an informative observation process.
Biom J. 2018 May;60(3):583-596. doi: 10.1002/bimj.201700176. Epub 2018 Feb 22.
4
Bayesian nonparametric models for ranked set sampling.
Lifetime Data Anal. 2015 Apr;21(2):315-29. doi: 10.1007/s10985-014-9312-x. Epub 2014 Oct 19.
5
Statistical inference for stochastic simulation models--theory and application.
Ecol Lett. 2011 Aug;14(8):816-27. doi: 10.1111/j.1461-0248.2011.01640.x. Epub 2011 Jun 17.
6
A Bayesian mixture model for partitioning gene expression data.
Biometrics. 2006 Jun;62(2):515-25. doi: 10.1111/j.1541-0420.2005.00492.x.
7
Alive SMC(2) : Bayesian model selection for low-count time series models with intractable likelihoods.
Biometrics. 2016 Jun;72(2):344-53. doi: 10.1111/biom.12449. Epub 2015 Nov 19.
8
Semiparametric bayesian inference for multilevel repeated measurement data.
Biometrics. 2007 Mar;63(1):280-9. doi: 10.1111/j.1541-0420.2006.00668.x.
9
Inference in high-dimensional parameter space.
J Comput Biol. 2015 Nov;22(11):997-1004. doi: 10.1089/cmb.2015.0086. Epub 2015 Jul 15.
10
Combinatorial Mixtures of Multiparameter Distributions: An Application to Bivariate Data.
Int J Biostat. 2017 Feb 16;13(1):/j/ijb.2017.13.issue-1/ijb-2015-0064/ijb-2015-0064.xml. doi: 10.1515/ijb-2015-0064.

引用本文的文献

2
Bayesian Nonparametrics for FRET using Realistic Integrative Detectors.
bioRxiv. 2025 Aug 27:2025.06.12.659382. doi: 10.1101/2025.06.12.659382.
3
Using Bayesian priors to overcome non-identifiablility issues in Hidden Markov models.
bioRxiv. 2025 May 5:2024.04.20.590387. doi: 10.1101/2024.04.20.590387.
4
An accurate probabilistic step finder for time-series analysis.
Biophys J. 2024 Sep 3;123(17):2749-2764. doi: 10.1016/j.bpj.2024.01.008. Epub 2024 Jan 9.
5
Extract latent features of single-particle trajectories with historical experience learning.
Biophys J. 2023 Nov 21;122(22):4451-4466. doi: 10.1016/j.bpj.2023.10.023. Epub 2023 Oct 27.
6
Fluorescence Microscopy: a statistics-optics perspective.
ArXiv. 2023 Oct 17:arXiv:2304.01456v3.
7
Resolving Molecular Heterogeneity with Single-Molecule Centrifugation.
J Am Chem Soc. 2023 Feb 15;145(6):3276-3282. doi: 10.1021/jacs.2c11450. Epub 2023 Jan 30.
8
Permissive and nonpermissive channel closings in CFTR revealed by a factor graph inference algorithm.
Biophys Rep (N Y). 2022 Oct 19;2(4):100083. doi: 10.1016/j.bpr.2022.100083. eCollection 2022 Dec 14.
9
Bayesian inference of kinetic schemes for ion channels by Kalman filtering.
Elife. 2022 May 4;11:e62714. doi: 10.7554/eLife.62714.

本文引用的文献

2
A primer on Bayesian inference for biophysical systems.
Biophys J. 2015 May 5;108(9):2103-13. doi: 10.1016/j.bpj.2015.03.042.
3
Determination of parameter identifiability in nonlinear biophysical models: A Bayesian approach.
J Gen Physiol. 2014 Mar;143(3):401-16. doi: 10.1085/jgp.201311116. Epub 2014 Feb 10.
4
Aggregated markov model using time series of single molecule dwell times with minimum excessive information.
Phys Rev Lett. 2013 Aug 2;111(5):058301. doi: 10.1103/PhysRevLett.111.058301. Epub 2013 Aug 1.
5
Exponential sum-fitting of dwell-time distributions without specifying starting parameters.
Biophys J. 2013 Jun 4;104(11):2383-91. doi: 10.1016/j.bpj.2013.04.030.
6
Bayesian approaches for mechanistic ion channel modeling.
Methods Mol Biol. 2013;1021:247-72. doi: 10.1007/978-1-62703-450-0_13.
7
MCMC can detect nonidentifiable models.
Biophys J. 2012 Dec 5;103(11):2275-86. doi: 10.1016/j.bpj.2012.10.024.
8
Role of conformational dynamics in α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor partial agonism.
J Biol Chem. 2012 Dec 21;287(52):43557-64. doi: 10.1074/jbc.M112.371815. Epub 2012 Oct 31.
9
Structure and stoichiometry of an accessory subunit TRIP8b interaction with hyperpolarization-activated cyclic nucleotide-gated channels.
Proc Natl Acad Sci U S A. 2012 May 15;109(20):7899-904. doi: 10.1073/pnas.1201997109. Epub 2012 May 1.
10
MCMC estimation of Markov models for ion channels.
Biophys J. 2011 Apr 20;100(8):1919-29. doi: 10.1016/j.bpj.2011.02.059.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验