van de Meent Jan-Willem, Bronson Jonathan E, Wood Frank, Gonzalez Ruben L, Wiggins Chris H
Columbia University, New York, NY, USA.
University of Oxford, Oxford, UK.
JMLR Workshop Conf Proc. 2013;28(2):361-369. Epub 2013 May 5.
We address the problem of analyzing sets of noisy time-varying signals that all report on the same process but confound straightforward analyses due to complex inter-signal heterogeneities and measurement artifacts. In particular we consider single-molecule experiments which indirectly measure the distinct steps in a biomolecular process via observations of noisy time-dependent signals such as a fluorescence intensity or bead position. Straightforward hidden Markov model (HMM) analyses attempt to characterize such processes in terms of a set of conformational states, the transitions that can occur between these states, and the associated rates at which those transitions occur; but require ad-hoc post-processing steps to combine multiple signals. Here we develop a hierarchically coupled HMM that allows experimentalists to deal with inter-signal variability in a principled and automatic way. Our approach is a generalized expectation maximization hyperparameter point estimation procedure with variational Bayes at the level of individual time series that learns an single interpretable representation of the overall data generating process.
我们解决了分析一组有噪声的时变信号的问题,这些信号都报告同一个过程,但由于复杂的信号间异质性和测量伪影,使得直接分析变得困难。特别是,我们考虑单分子实验,该实验通过观察有噪声的时间相关信号(如荧光强度或珠子位置)间接测量生物分子过程中的不同步骤。直接的隐马尔可夫模型(HMM)分析试图根据一组构象状态、这些状态之间可能发生的转变以及这些转变发生的相关速率来表征此类过程;但需要特殊的后处理步骤来组合多个信号。在这里,我们开发了一种分层耦合的HMM,使实验人员能够以一种有原则且自动的方式处理信号间的变异性。我们的方法是一种广义期望最大化超参数点估计程序,在单个时间序列层面采用变分贝叶斯方法,学习整个数据生成过程的单一可解释表示。