Hwang Jungseek
Department of Physics, Sungkyunkwan University, Suwon, Gyeonggi-do 440-746, Korea.
J Phys Condens Matter. 2015 Mar 4;27(8):085701. doi: 10.1088/0953-8984/27/8/085701. Epub 2015 Feb 4.
We performed a reverse process of the usual optical data analysis of boson-exchange superconductors. We calculated the optical self-energy from two (MMP and MMP+peak) input model electron-boson spectral density functions using Allen's formula for one normal and two (s- and d-wave) superconducting cases. We obtained the optical constants including the optical conductivity and the dynamic dielectric function from the optical self-energy using an extended Drude model, and finally calculated the reflectance spectrum. Furthermore, to investigate impurity effects on optical quantities we added various levels of impurities (from the clean to the dirty limit) in the optical self-energy and performed the same reverse process to obtain the optical conductivity, the dielectric function, and reflectance. From these optical constants obtained from the reverse process we extracted the impurity-dependent superfluid densities for two superconducting cases using two independent methods (the Ferrel-Glover-Tinkham sum rule and the extrapolation to zero frequency of -ϵ1(ω)ω(2)); we found that a certain level of impurities is necessary to get a good agreement on results obtained by the two methods. We observed that impurities give similar effects on various optical constants of s- and d-wave superconductors; the greater the impurities the more distinct the gap feature and the lower the superfluid density. However, the s-wave superconductor gives the superconducting gap feature more clearly than the d-wave superconductor because in the d-wave superconductors the optical quantities are averaged over the anisotropic Fermi surface. Our results supply helpful information to see how characteristic features of the electron-boson spectral function and the s- and d-wave superconducting gaps appear in various optical constants including raw reflectance spectrum. Our study may help with a thorough understanding of the usual optical analysis process. Further systematic study of experimental data collected at various conditions using the optical analysis process will help to reveal the origin of the mediated boson in the boson-exchange superconductors.
我们对玻色子交换超导体的常规光学数据分析进行了反向过程。我们使用艾伦公式,针对一种正常情况以及两种(s波和d波)超导情况,从两个输入模型(MMP和MMP + 峰)的电子 - 玻色子谱密度函数计算光学自能。我们使用扩展的德鲁德模型,从光学自能中获得包括光导率和动态介电函数在内的光学常数,最后计算反射光谱。此外,为了研究杂质对光学量的影响,我们在光学自能中添加了不同水平的杂质(从干净极限到脏极限),并执行相同的反向过程以获得光导率、介电函数和反射率。从这个反向过程获得的这些光学常数中,我们使用两种独立方法(费雷尔 - 格洛弗 - 廷克姆求和规则以及 -ϵ1(ω)ω(2) 向零频率的外推)提取了两种超导情况下与杂质相关的超流密度;我们发现需要一定水平的杂质才能使两种方法得到的结果达成良好一致。我们观察到杂质对s波和d波超导体的各种光学常数有相似的影响;杂质越多,能隙特征越明显,超流密度越低。然而,s波超导体比d波超导体更清晰地呈现超导能隙特征,因为在d波超导体中,光学量是在各向异性费米面上进行平均的。我们的结果为了解电子 - 玻色子谱函数以及s波和d波超导能隙的特征如何在包括原始反射光谱在内的各种光学常数中出现提供了有用信息。我们的研究可能有助于深入理解常规光学分析过程。使用光学分析过程对在各种条件下收集的实验数据进行进一步系统研究,将有助于揭示玻色子交换超导体中介子玻色子的起源。