Suppr超能文献

3T下脑肿瘤中甘氨酸的活体(1)H磁共振波谱成像

In vivo (1)H MRSI of glycine in brain tumors at 3T.

作者信息

Ganji Sandeep K, Maher Elizabeth A, Choi Changho

机构信息

Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA.

Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA.

出版信息

Magn Reson Med. 2016 Jan;75(1):52-62. doi: 10.1002/mrm.25588. Epub 2015 Feb 4.

Abstract

PURPOSE

MR spectroscopic imaging (SI) of glycine (Gly) in the human brain is challenging due to the interference of the abundant neighboring J-coupled resonances. Our aim is to accomplish reliable imaging of Gly in healthy brain and brain tumors using an optimized MR sequence scheme at 3 tesla.

METHODS

Two-dimensional (1)H SI was performed with a point-resolved spectroscopy scheme. An echo time of 160 ms was used for separation between Gly and myo-inositol signals. Data were collected from eight healthy volunteers and 14 subjects with gliomas. Spectra were analyzed with the linear combination model using numerically calculated basis spectra. Metabolite concentrations were estimated with reference to creatine in white matter (WM) regions at 6.4 molar concentrations (mM).

RESULTS

From a linear regression analysis with respect to the fractional gray matter (GM) content, the Gly concentrations in pure GM and WM in healthy brains were estimated to be 1.1 and 0.3 mM, respectively. Gly was significantly elevated in tumors. The tumor-to-contralateral Gly concentration ratio was more extensive with higher grades, showing ∼ 10-fold elevation of Gly in glioblastomas.

CONCLUSION

The Gly level is significantly different between GM and WM in healthy brains. Our data indicate that SI of Gly may provide a biomarker of brain tumor malignancy.

摘要

目的

由于丰富的邻近 J 耦合共振的干扰,对人脑中甘氨酸(Gly)进行磁共振波谱成像(SI)具有挑战性。我们的目的是使用 3 特斯拉的优化磁共振序列方案,在健康脑和脑肿瘤中实现对甘氨酸的可靠成像。

方法

采用点分辨波谱方案进行二维(1)H SI。使用 160 毫秒的回波时间来分离甘氨酸和肌醇信号。从 8 名健康志愿者和 14 名患有胶质瘤的受试者收集数据。使用数值计算的基础波谱,通过线性组合模型分析波谱。代谢物浓度以白质(WM)区域中 6.4 摩尔浓度(mM)的肌酸为参照进行估计。

结果

通过对灰质(GM)含量分数的线性回归分析,健康脑中纯 GM 和 WM 中的甘氨酸浓度估计分别为 1.1 和 0.3 mM。肿瘤中的甘氨酸显著升高。肿瘤与对侧的甘氨酸浓度比在更高分级时更为显著,在胶质母细胞瘤中甘氨酸升高约 10 倍。

结论

健康脑中 GM 和 WM 之间的甘氨酸水平存在显著差异。我们的数据表明,甘氨酸的 SI 可能提供脑肿瘤恶性程度的生物标志物。

相似文献

1
In vivo (1)H MRSI of glycine in brain tumors at 3T.
Magn Reson Med. 2016 Jan;75(1):52-62. doi: 10.1002/mrm.25588. Epub 2015 Feb 4.
3
Measurement of glycine in healthy and tumorous brain by triple-refocusing MRS at 3 T in vivo.
NMR Biomed. 2017 Sep;30(9). doi: 10.1002/nbm.3747. Epub 2017 May 26.
4
1H MR spectroscopic imaging with short and long echo time to discriminate glycine in glial tumours.
MAGMA. 2009 Feb;22(1):33-41. doi: 10.1007/s10334-008-0145-z. Epub 2008 Oct 1.
6
Metabolic voxel-based analysis of the complete human brain using fast 3D-MRSI: Proof of concept in multiple sclerosis.
J Magn Reson Imaging. 2016 Aug;44(2):411-9. doi: 10.1002/jmri.25139. Epub 2016 Jan 12.
9
In vivo detection of citrate in brain tumors by 1H magnetic resonance spectroscopy at 3T.
Magn Reson Med. 2014 Aug;72(2):316-23. doi: 10.1002/mrm.24946. Epub 2013 Oct 1.
10
Metabolite ratios in 1H MR spectroscopic imaging of the prostate.
Magn Reson Med. 2015 Jan;73(1):1-12. doi: 10.1002/mrm.25122. Epub 2014 Jan 31.

引用本文的文献

1
Plasma amino acids indicate glioblastoma with ATRX loss.
Amino Acids. 2021 Jan;53(1):119-132. doi: 10.1007/s00726-020-02931-3. Epub 2021 Jan 4.
2
High-resolution metabolic imaging of high-grade gliomas using 7T-CRT-FID-MRSI.
Neuroimage Clin. 2020;28:102433. doi: 10.1016/j.nicl.2020.102433. Epub 2020 Sep 15.
3
Elevated glycine detected on in vivo magnetic resonance spectroscopy in a breast cancer patient: case report and literature review.
BJR Case Rep. 2020 Feb 12;6(1):20190090. doi: 10.1259/bjrcr.20190090. eCollection 2020 Mar.
4
Glycine by MR spectroscopy is an imaging biomarker of glioma aggressiveness.
Neuro Oncol. 2020 Jul 7;22(7):1018-1029. doi: 10.1093/neuonc/noaa034.
7
Measurement of glycine in healthy and tumorous brain by triple-refocusing MRS at 3 T in vivo.
NMR Biomed. 2017 Sep;30(9). doi: 10.1002/nbm.3747. Epub 2017 May 26.
9
Imaging Tumor Metabolism to Assess Disease Progression and Treatment Response.
Clin Cancer Res. 2016 Nov 1;22(21):5196-5203. doi: 10.1158/1078-0432.CCR-16-0159. Epub 2016 Sep 8.

本文引用的文献

2
Mapping of glycine distributions in gliomas.
AJNR Am J Neuroradiol. 2014 Jun;35(6 Suppl):S31-6. doi: 10.3174/ajnr.A3845. Epub 2014 Jan 30.
3
Accelerating phase-encoded proton MR spectroscopic imaging by compressed sensing.
J Magn Reson Imaging. 2015 Feb;41(2):487-95. doi: 10.1002/jmri.24553. Epub 2014 Jan 17.
5
Measurement of glycine in gray and white matter in the human brain in vivo by 1H MRS at 7.0 T.
Magn Reson Med. 2012 Aug;68(2):325-31. doi: 10.1002/mrm.24368. Epub 2012 Jun 12.
6
Metabolite profiling identifies a key role for glycine in rapid cancer cell proliferation.
Science. 2012 May 25;336(6084):1040-4. doi: 10.1126/science.1218595.
7
Compressive sensing could accelerate 1H MR metabolic imaging in the clinic.
Radiology. 2012 Mar;262(3):985-94. doi: 10.1148/radiol.11111098.
9
T2 measurement of J-coupled metabolites in the human brain at 3T.
NMR Biomed. 2012 Apr;25(4):523-9. doi: 10.1002/nbm.1767. Epub 2011 Aug 15.
10
Glycine and its synaptic interactions: functional and clinical implications.
Neurology. 2011 Aug 16;77(7):677-83. doi: 10.1212/WNL.0b013e31822a2791.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验