Earth System Science, University of California, Irvine Irvine, CA, USA.
Department of Earth and Planetary Sciences, University of California, Santa Cruz Santa Cruz, CA, USA.
Front Microbiol. 2015 Jan 21;5:794. doi: 10.3389/fmicb.2014.00794. eCollection 2014.
Atmospheric deposition is a major source of trace metals in marine surface waters and supplies vital micronutrients to phytoplankton, yet measured aerosol trace metal solubility values are operationally defined, and there are relatively few multi-element studies on aerosol-metal solubility in seawater. Here we measure the solubility of aluminum (Al), cadmium (Cd), cobalt (Co), copper (Cu), iron (Fe), manganese (Mn), nickel (Ni), lead (Pb), and zinc (Zn) from natural aerosol samples in seawater over a 7 days period to (1) evaluate the role of extraction time in trace metal dissolution behavior and (2) explore how the individual dissolution patterns could influence biota. Dissolution behavior occurs over a continuum ranging from rapid dissolution, in which the majority of soluble metal dissolved immediately upon seawater exposure (Cd and Co in our samples), to gradual dissolution, where metals dissolved slowly over time (Zn, Mn, Cu, and Al in our samples). Additionally, dissolution affected by interactions with particles was observed in which a decline in soluble metal concentration over time occurred (Fe and Pb in our samples). Natural variability in aerosol chemistry between samples can cause metals to display different dissolution kinetics in different samples, and this was particularly evident for Ni, for which samples showed a broad range of dissolution rates. The elemental molar ratio of metals in the bulk aerosols was 23,189Fe: 22,651Al: 445Mn: 348Zn: 71Cu: 48Ni: 23Pb: 9Co: 1Cd, whereas the seawater soluble molar ratio after 7 days of leaching was 11Fe: 620Al: 205Mn: 240Zn: 20Cu: 14Ni: 9Pb: 2Co: 1Cd. The different kinetics and ratios of aerosol metal dissolution have implications for phytoplankton nutrition, and highlight the need for unified extraction protocols that simulate aerosol metal dissolution in the surface ocean.
大气沉降是海洋表层水中痕量金属的主要来源,并为浮游植物提供重要的微量营养素,但测量的气溶胶痕量金属溶解度值是操作定义的,并且在海水中气溶胶-金属溶解度方面的多元素研究相对较少。在这里,我们在 7 天的时间内测量了天然气溶胶样品在海水中的铝(Al)、镉(Cd)、钴(Co)、铜(Cu)、铁(Fe)、锰(Mn)、镍(Ni)、铅(Pb)和锌(Zn)的溶解度,以(1)评估提取时间对痕量金属溶解行为的作用,(2)探讨个别溶解模式如何影响生物群。溶解行为发生在一个连续的范围内,从快速溶解到逐渐溶解,其中大部分可溶性金属在暴露于海水时立即溶解(我们样品中的 Cd 和 Co),到逐渐溶解,其中金属随时间缓慢溶解(我们样品中的 Zn、Mn、Cu 和 Al)。此外,还观察到由于与颗粒相互作用而影响溶解的情况,其中可溶性金属浓度随时间下降(我们样品中的 Fe 和 Pb)。样品之间气溶胶化学的自然变化会导致金属在不同样品中显示出不同的溶解动力学,这在 Ni 中尤为明显,其中样品显示出广泛的溶解速率范围。大块气溶胶中金属的元素摩尔比为 23189Fe:22651Al:445Mn:348Zn:71Cu:48Ni:23Pb:9Co:1Cd,而 7 天后浸出的海水可溶摩尔比为 11Fe:620Al:205Mn:240Zn:20Cu:14Ni:9Pb:2Co:1Cd。气溶胶金属溶解的不同动力学和比例对浮游植物的营养有影响,并强调需要统一的提取方案,以模拟海洋表面气溶胶金属的溶解。