Tilton Susan C, Matzke Melissa M, Sowa Marianne B, Stenoien David L, Weber Thomas J, Morgan William F, Waters Katrina M
Computational Biology and Bioinformatics, Pacific Northwest National Laboratory, Richland, WA 99338, USA.
Health Impacts and Exposure Science, Pacific Northwest National Laboratory, Richland, WA 99338, USA.
Toxicol Appl Pharmacol. 2015 May 15;285(1):1-11. doi: 10.1016/j.taap.2015.01.019. Epub 2015 Feb 2.
The goal of this study was to define pathways regulated by low dose radiation to understand how biological systems respond to subtle perturbations in their environment and prioritize pathways for human health assessment. Using an in vitro 3-D human full thickness skin model, we have examined the temporal response of dermal and epidermal layers to 10 cGy X-ray using transcriptomic, proteomic, phosphoproteomic and metabolomic platforms. Bioinformatics analysis of each dataset independently revealed potential signaling mechanisms affected by low dose radiation, and integrating data shed additional insight into the mechanisms regulating low dose responses in human tissue. We examined direct interactions among datasets (top down approach) and defined several hubs as significant regulators, including transcription factors (YY1, MYC and CREB1), kinases (CDK2, PLK1) and a protease (MMP2). These data indicate a shift in response across time - with an increase in DNA repair, tissue remodeling and repression of cell proliferation acutely (24-72h). Pathway-based integration (bottom up approach) identified common molecular and pathway responses to low dose radiation, including oxidative stress, nitric oxide signaling and transcriptional regulation through the SP1 factor that would not have been identified by the individual data sets. Significant regulation of key downstream metabolites of nitrative stress was measured within these pathways. Among the features identified in our study, the regulation of MMP2 and SP1 was experimentally validated. Our results demonstrate the advantage of data integration to broadly define the pathways and networks that represent the mechanisms by which complex biological systems respond to perturbation.
本研究的目的是确定低剂量辐射所调控的信号通路,以了解生物系统如何对其环境中的细微扰动做出反应,并确定人类健康评估的优先信号通路。我们使用体外三维人全层皮肤模型,通过转录组学、蛋白质组学、磷酸化蛋白质组学和代谢组学平台,研究了真皮层和表皮层对10 cGy X射线的时间响应。对每个数据集进行的生物信息学分析独立揭示了受低剂量辐射影响的潜在信号传导机制,整合数据则进一步深入了解了人类组织中低剂量反应的调控机制。我们研究了数据集之间的直接相互作用(自上而下的方法),并确定了几个作为重要调控因子的枢纽,包括转录因子(YY1、MYC和CREB1)、激酶(CDK2、PLK1)和一种蛋白酶(MMP2)。这些数据表明,随着时间推移,反应发生了变化——DNA修复、组织重塑增加,细胞增殖在急性反应期(24 - 72小时)受到抑制。基于信号通路的整合(自下而上的方法)确定了对低剂量辐射的常见分子和信号通路反应,包括氧化应激、一氧化氮信号传导以及通过SP1因子的转录调控,这些是单个数据集无法识别的。在这些信号通路中检测到了硝化应激关键下游代谢物的显著调控。在我们研究中确定的特征中,MMP2和SP1的调控通过实验得到了验证。我们的结果证明了数据整合在广泛定义代表复杂生物系统对扰动反应机制的信号通路和网络方面的优势。