Suppr超能文献

氧化应激会改变整体组蛋白修饰和DNA甲基化。

Oxidative stress alters global histone modification and DNA methylation.

作者信息

Niu Yingmei, DesMarais Thomas L, Tong Zhaohui, Yao Yixin, Costa Max

机构信息

Occupational Disease and Toxicology Department, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China 100020.

Department of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987, USA.

出版信息

Free Radic Biol Med. 2015 May;82:22-8. doi: 10.1016/j.freeradbiomed.2015.01.028. Epub 2015 Feb 3.

Abstract

The JmjC domain-containing histone demethylases can remove histone lysine methylation and thereby regulate gene expression. The JmjC domain uses iron Fe(II) and α-ketoglutarate (αKG) as cofactors in an oxidative demethylation reaction via hydroxymethyl lysine. We hypothesize that reactive oxygen species will oxidize Fe(II) to Fe(III), thereby attenuating the activity of JmjC domain-containing histone demethylases. To minimize secondary responses from cells, extremely short periods of oxidative stress (3h) were used to investigate this question. Cells that were exposed to hydrogen peroxide (H2O2) for 3h exhibited increases in several histone methylation marks including H3K4me3 and decreases of histone acetylation marks including H3K9ac and H4K8ac; preincubation with ascorbate attenuated these changes. The oxidative stress level was measured by generation of 2',7'-dichlorofluorescein, GSH/GSSG ratio, and protein carbonyl content. A cell-free system indicated that H2O2 inhibited histone demethylase activity where increased Fe(II) rescued this inhibition. TET protein showed a decreased activity under oxidative stress. Cells exposed to a low-dose and long-term (3 weeks) oxidative stress also showed increased global levels of H3K4me3 and H3K27me3. However, these global methylation changes did not persist after washout. The cells exposed to short-term oxidative stress also appeared to have higher activity of class I/II histone deacetylase (HDAC) but not class III HDAC. In conclusion, we have found that oxidative stress transiently alters the epigenetic program process through modulating the activity of enzymes responsible for demethylation and deacetylation of histones.

摘要

含JmjC结构域的组蛋白去甲基化酶可去除组蛋白赖氨酸甲基化,从而调节基因表达。JmjC结构域在通过羟甲基赖氨酸进行的氧化去甲基化反应中使用铁离子(Fe(II))和α-酮戊二酸(αKG)作为辅因子。我们推测活性氧会将Fe(II)氧化为Fe(III),从而减弱含JmjC结构域的组蛋白去甲基化酶的活性。为了将细胞的二次反应降至最低,我们使用极短时间的氧化应激(3小时)来研究这个问题。暴露于过氧化氢(H2O2)3小时的细胞表现出几种组蛋白甲基化标记增加,包括H3K4me3,同时组蛋白乙酰化标记减少,包括H3K9ac和H4K8ac;预先与抗坏血酸孵育可减弱这些变化。通过2',7'-二氯荧光素的生成、谷胱甘肽/氧化型谷胱甘肽(GSH/GSSG)比值和蛋白质羰基含量来测量氧化应激水平。无细胞系统表明,H2O2抑制组蛋白去甲基化酶活性,而增加Fe(II)可挽救这种抑制作用。TET蛋白在氧化应激下活性降低。暴露于低剂量长期(3周)氧化应激的细胞也表现出整体H3K4me3和H3K27me3水平升高。然而,洗脱后这些整体甲基化变化并未持续。暴露于短期氧化应激的细胞似乎也具有较高的I/II类组蛋白去乙酰化酶(HDAC)活性,但III类HDAC活性不高。总之,我们发现氧化应激通过调节负责组蛋白去甲基化和去乙酰化的酶的活性,短暂改变表观遗传程序过程。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aef2/4464695/3554de89902c/nihms660825f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验