From the Laboratoire de Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes, Centre National de la Recherche Scientifique (UMR5004), Institut National de la Recherche Agronomique, Université Montpellier II, Ecole Nationale Supérieure d'Agronomie, 34060 Montpellier Cedex 2, France and.
J Biol Chem. 2014 Jan 31;289(5):2515-25. doi: 10.1074/jbc.M113.514828. Epub 2013 Dec 17.
Iron (Fe) is essential for virtually all living organisms. The identification of the chemical forms of iron (the speciation) circulating in and between cells is crucial to further understand the mechanisms of iron delivery to its final targets. Here we analyzed how iron is transported to the seeds by the chemical identification of iron complexes that are delivered to embryos, followed by the biochemical characterization of the transport of these complexes by the embryo, using the pea (Pisum sativum) as a model species. We have found that iron circulates as ferric complexes with citrate and malate (Fe(III)3Cit2Mal2, Fe(III)3Cit3Mal1, Fe(III)Cit2). Because dicotyledonous plants only transport ferrous iron, we checked whether embryos were capable of reducing iron of these complexes. Indeed, embryos did express a constitutively high ferric reduction activity. Surprisingly, iron(III) reduction is not catalyzed by the expected membrane-bound ferric reductase. Instead, embryos efflux high amounts of ascorbate that chemically reduce iron(III) from citrate-malate complexes. In vitro transport experiments on isolated embryos using radiolabeled (55)Fe demonstrated that this ascorbate-mediated reduction is an obligatory step for the uptake of iron(II). Moreover, the ascorbate efflux activity was also measured in Arabidopsis embryos, suggesting that this new iron transport system may be generic to dicotyledonous plants. Finally, in embryos of the ascorbate-deficient mutants vtc2-4, vtc5-1, and vtc5-2, the reducing activity and the iron concentration were reduced significantly. Taken together, our results identified a new iron transport mechanism in plants that could play a major role to control iron loading in seeds.
铁(Fe)对几乎所有生物都是必需的。鉴定细胞内和细胞间循环的铁的化学形式(形态)对于进一步了解铁向其最终靶标的输送机制至关重要。在这里,我们通过鉴定输送到胚胎的铁复合物的化学形式来分析铁如何通过化学识别被运输到种子中,然后通过胚胎对这些复合物的生化特性来研究铁的运输,使用豌豆(Pisum sativum)作为模式物种。我们发现铁以与柠檬酸和苹果酸形成的铁复合物形式循环(Fe(III)3Cit2Mal2、Fe(III)3Cit3Mal1、Fe(III)Cit2)。由于双子叶植物只运输亚铁,我们检查了胚胎是否能够还原这些复合物中的铁。事实上,胚胎确实表达了一种组成性的高铁还原活性。令人惊讶的是,铁(III)还原不是由预期的膜结合铁还原酶催化的。相反,胚胎大量排出抗坏血酸,抗坏血酸通过化学还原从柠檬酸-苹果酸复合物中还原铁(III)。使用放射性标记的(55)Fe 进行的离体胚胎运输实验表明,这种抗坏血酸介导的还原是铁(II)摄取的必需步骤。此外,还在拟南芥胚胎中测量了抗坏血酸外排活性,表明这种新的铁运输系统可能是双子叶植物的通用系统。最后,在抗坏血酸缺乏突变体 vtc2-4、vtc5-1 和 vtc5-2 的胚胎中,还原活性和铁浓度显著降低。总之,我们的结果确定了植物中一种新的铁运输机制,它可能在控制种子中铁的负载中发挥主要作用。