Turoňová Beata, Marsalek Lukas, Davidovič Tomáš, Slusallek Philipp
Saarland University, Campus E 1.1, 66123 Saarbrücken, Germany; IMPRS-CS, Max-Planck Institute for Informatics, Campus E 1.4, 66123 Saarbrücken, Germany.
Saarland University, Campus E 1.1, 66123 Saarbrücken, Germany; Agents and Simulated Reality Group, DFKI GmbH, Campus E 3.4, 66123 Saarbrücken, Germany; Eyen SE, Na Nivách 1043/16, 14100 Prague, Czech Republic.
J Struct Biol. 2015 Mar;189(3):195-206. doi: 10.1016/j.jsb.2015.01.011. Epub 2015 Feb 4.
Cryo Electron Tomography (cryoET) plays an essential role in Structural Biology, as it is the only technique that allows to study the structure of large macromolecular complexes in their close to native environment in situ. The reconstruction methods currently in use, such as Weighted Back Projection (WBP) or Simultaneous Iterative Reconstruction Technique (SIRT), deliver noisy and low-contrast reconstructions, which complicates the application of high-resolution protocols, such as Subtomogram Averaging (SA). We propose a Progressive Stochastic Reconstruction Technique (PSRT) - a novel iterative approach to tomographic reconstruction in cryoET based on Monte Carlo random walks guided by Metropolis-Hastings sampling strategy. We design a progressive reconstruction scheme to suit the conditions present in cryoET and apply it successfully to reconstructions of macromolecular complexes from both synthetic and experimental datasets. We show how to integrate PSRT into SA, where it provides an elegant solution to the region-of-interest problem and delivers high-contrast reconstructions that significantly improve template-based localization without any loss of high-resolution structural information. Furthermore, the locality of SA is exploited to design an importance sampling scheme which significantly speeds up the otherwise slow Monte Carlo approach. Finally, we design a new memory efficient solution for the specimen-level interior problem of cryoET, removing all associated artifacts.
冷冻电子断层扫描(cryoET)在结构生物学中起着至关重要的作用,因为它是唯一能够在接近天然环境中原位研究大型大分子复合物结构的技术。目前使用的重建方法,如加权反投影(WBP)或同时迭代重建技术(SIRT),会产生噪声大且对比度低的重建结果,这使得高分辨率协议(如亚断层平均法(SA))的应用变得复杂。我们提出了一种渐进随机重建技术(PSRT)——一种基于由Metropolis-Hastings采样策略引导的蒙特卡罗随机游走的新型冷冻电子断层扫描迭代重建方法。我们设计了一种渐进重建方案以适应冷冻电子断层扫描中的条件,并将其成功应用于从合成数据集和实验数据集中重建大分子复合物。我们展示了如何将PSRT集成到SA中,它为感兴趣区域问题提供了一个优雅的解决方案,并提供高对比度的重建结果,显著改善基于模板的定位,而不会丢失任何高分辨率结构信息。此外,利用SA的局部性设计了一种重要性采样方案,该方案显著加快了原本缓慢的蒙特卡罗方法。最后,我们为冷冻电子断层扫描的样本级内部问题设计了一种新的内存高效解决方案,消除了所有相关伪影。