Suppr超能文献

电子显微镜中迭代重建算法的使用情况调查。

A Survey of the Use of Iterative Reconstruction Algorithms in Electron Microscopy.

机构信息

Centro Nacional de Biotecnología, CSIC, c/Darwin 3, Cantoblanco, 28049 Madrid, Spain.

Universidad CEU San Pablo, Campus Urbanizacion Montepríncipe, Boadilla del Monte, 28668 Madrid, Spain.

出版信息

Biomed Res Int. 2017;2017:6482567. doi: 10.1155/2017/6482567. Epub 2017 Sep 17.

Abstract

One of the key steps in Electron Microscopy is the tomographic reconstruction of a three-dimensional (3D) map of the specimen being studied from a set of two-dimensional (2D) projections acquired at the microscope. This tomographic reconstruction may be performed with different reconstruction algorithms that can be grouped into several large families: direct Fourier inversion methods, back-projection methods, Radon methods, or iterative algorithms. In this review, we focus on the latter family of algorithms, explaining the mathematical rationale behind the different algorithms in this family as they have been introduced in the field of Electron Microscopy. We cover their use in Single Particle Analysis (SPA) as well as in Electron Tomography (ET).

摘要

电子显微镜中的一个关键步骤是从在显微镜下获取的一组二维(2D)投影中对研究的标本进行三维(3D)断层重建。这种断层重建可以使用不同的重建算法来完成,这些算法可以分为几个大的家族:直接傅里叶反演方法、反向投影方法、Radon 方法或迭代算法。在这篇综述中,我们专注于后一类算法,解释该家族中不同算法背后的数学原理,因为它们已经在电子显微镜领域得到了应用。我们涵盖了它们在单颗粒分析(SPA)和电子断层扫描(ET)中的应用。

相似文献

1
A Survey of the Use of Iterative Reconstruction Algorithms in Electron Microscopy.
Biomed Res Int. 2017;2017:6482567. doi: 10.1155/2017/6482567. Epub 2017 Sep 17.
2
Fundamentals of three-dimensional reconstruction from projections.
Methods Enzymol. 2010;482:1-33. doi: 10.1016/S0076-6879(10)82001-4.
3
Ewald sphere correction for single-particle electron microscopy.
Ultramicroscopy. 2006 Mar;106(4-5):376-82. doi: 10.1016/j.ultramic.2005.11.001. Epub 2005 Dec 9.
5
A novel dual-axis iterative algorithm for electron tomography.
J Struct Biol. 2006 Jan;153(1):55-63. doi: 10.1016/j.jsb.2005.10.005. Epub 2005 Nov 28.
6
Transfer function restoration in 3D electron microscopy via iterative data refinement.
Phys Med Biol. 2004 Feb 21;49(4):509-22. doi: 10.1088/0031-9155/49/4/003.
7
A multiresolution approach to orientation assignment in 3D electron microscopy of single particles.
J Struct Biol. 2004 Jun;146(3):381-92. doi: 10.1016/j.jsb.2004.01.006.
8
Accurate real space iterative reconstruction (RESIRE) algorithm for tomography.
Sci Rep. 2023 Apr 6;13(1):5624. doi: 10.1038/s41598-023-31124-7.
9
3D reconstruction from 2D crystal image and diffraction data.
Methods Enzymol. 2010;482:101-29. doi: 10.1016/S0076-6879(10)82004-X.
10
PGNet: Projection generative network for sparse-view reconstruction of projection-based magnetic particle imaging.
Med Phys. 2023 Apr;50(4):2354-2371. doi: 10.1002/mp.16048. Epub 2022 Oct 23.

引用本文的文献

2
A method for restoring signals and revealing individual macromolecule states in cryo-ET, REST.
Nat Commun. 2023 May 22;14(1):2937. doi: 10.1038/s41467-023-38539-w.
3
Estimating conformational landscapes from Cryo-EM particles by 3D Zernike polynomials.
Nat Commun. 2023 Jan 11;14(1):154. doi: 10.1038/s41467-023-35791-y.
4
Emerging Themes in CryoEM─Single Particle Analysis Image Processing.
Chem Rev. 2022 Sep 14;122(17):13915-13951. doi: 10.1021/acs.chemrev.1c00850. Epub 2022 Jul 4.
5
On bias, variance, overfitting, gold standard and consensus in single-particle analysis by cryo-electron microscopy.
Acta Crystallogr D Struct Biol. 2022 Apr 1;78(Pt 4):410-423. doi: 10.1107/S2059798322001978. Epub 2022 Mar 16.
6
A joint alignment and reconstruction algorithm for electron tomography to visualize in-depth cell-to-cell interactions.
Histochem Cell Biol. 2022 Jun;157(6):685-696. doi: 10.1007/s00418-022-02095-z. Epub 2022 Mar 23.
7
Compressed sensing for electron cryotomography and high-resolution subtomogram averaging of biological specimens.
Structure. 2022 Mar 3;30(3):408-417.e4. doi: 10.1016/j.str.2021.12.010. Epub 2022 Jan 19.
8
Advances in Xmipp for Cryo-Electron Microscopy: From Xmipp to Scipion.
Molecules. 2021 Oct 15;26(20):6224. doi: 10.3390/molecules26206224.
10
Automatic local resolution-based sharpening of cryo-EM maps.
Bioinformatics. 2020 Feb 1;36(3):765-772. doi: 10.1093/bioinformatics/btz671.

本文引用的文献

1
Compressed Sensing Electron Tomography for Determining Biological Structure.
Sci Rep. 2016 Jun 13;6:27614. doi: 10.1038/srep27614.
2
FIRT: Filtered iterative reconstruction technique with information restoration.
J Struct Biol. 2016 Jul;195(1):49-61. doi: 10.1016/j.jsb.2016.04.015. Epub 2016 Apr 29.
3
The field that came in from the cold.
Nat Methods. 2016 Jan;13(1):19-22. doi: 10.1038/nmeth.3698.
4
The development of cryo-EM into a mainstream structural biology technique.
Nat Methods. 2016 Jan;13(1):24-7. doi: 10.1038/nmeth.3694.
5
ICON: 3D reconstruction with 'missing-information' restoration in biological electron tomography.
J Struct Biol. 2016 Jul;195(1):100-12. doi: 10.1016/j.jsb.2016.04.004. Epub 2016 Apr 11.
6
Single-particle structure determination by X-ray free-electron lasers: Possibilities and challenges.
Struct Dyn. 2015 Apr 30;2(4):041601. doi: 10.1063/1.4919740. eCollection 2015 Jul.
7
How good can cryo-EM become?
Nat Methods. 2016 Jan;13(1):28-32. doi: 10.1038/nmeth.3695.
8
TVR-DART: A More Robust Algorithm for Discrete Tomography From Limited Projection Data With Automated Gray Value Estimation.
IEEE Trans Image Process. 2016 Jan;25(1):455-68. doi: 10.1109/TIP.2015.2504869. Epub 2015 Dec 3.
10
Electron tomography image reconstruction using data-driven adaptive compressed sensing.
Scanning. 2016 May;38(3):251-76. doi: 10.1002/sca.21271. Epub 2015 Oct 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验