Centro Nacional de Biotecnología, CSIC, c/Darwin 3, Cantoblanco, 28049 Madrid, Spain.
Universidad CEU San Pablo, Campus Urbanizacion Montepríncipe, Boadilla del Monte, 28668 Madrid, Spain.
Biomed Res Int. 2017;2017:6482567. doi: 10.1155/2017/6482567. Epub 2017 Sep 17.
One of the key steps in Electron Microscopy is the tomographic reconstruction of a three-dimensional (3D) map of the specimen being studied from a set of two-dimensional (2D) projections acquired at the microscope. This tomographic reconstruction may be performed with different reconstruction algorithms that can be grouped into several large families: direct Fourier inversion methods, back-projection methods, Radon methods, or iterative algorithms. In this review, we focus on the latter family of algorithms, explaining the mathematical rationale behind the different algorithms in this family as they have been introduced in the field of Electron Microscopy. We cover their use in Single Particle Analysis (SPA) as well as in Electron Tomography (ET).
电子显微镜中的一个关键步骤是从在显微镜下获取的一组二维(2D)投影中对研究的标本进行三维(3D)断层重建。这种断层重建可以使用不同的重建算法来完成,这些算法可以分为几个大的家族:直接傅里叶反演方法、反向投影方法、Radon 方法或迭代算法。在这篇综述中,我们专注于后一类算法,解释该家族中不同算法背后的数学原理,因为它们已经在电子显微镜领域得到了应用。我们涵盖了它们在单颗粒分析(SPA)和电子断层扫描(ET)中的应用。