Suppr超能文献

用于空间时间序列的R-vine模型及其在日平均温度中的应用

R-vine models for spatial time series with an application to daily mean temperature.

作者信息

Erhardt Tobias Michael, Czado Claudia, Schepsmeier Ulf

机构信息

Zentrum Mathematik, Technische Universität München, Boltzmannstr. 3, 85748 Garching, Germany.

出版信息

Biometrics. 2015 Jun;71(2):323-32. doi: 10.1111/biom.12279. Epub 2015 Feb 6.

Abstract

We introduce an extension of R-vine copula models to allow for spatial dependencies and model based prediction at unobserved locations. The proposed spatial R-vine model combines the flexibility of vine copulas with the classical geostatistical idea of modeling spatial dependencies using the distances between the variable locations. In particular, the model is able to capture non-Gaussian spatial dependencies. To develop and illustrate our approach, we consider daily mean temperature data observed at 54 monitoring stations in Germany. We identify relationships between the vine copula parameters and the station distances and exploit these in order to reduce the huge number of parameters needed to parametrize a 54-dimensional R-vine model fitted to the data. The new distance based model parametrization results in a distinct reduction in the number of parameters and makes parameter estimation and prediction at unobserved locations feasible. The prediction capabilities are validated using adequate scoring techniques, showing a better performance of the spatial R-vine copula model compared to a Gaussian spatial model.

摘要

我们引入了R藤Copula模型的一种扩展,以考虑空间依赖性并在未观测位置进行基于模型的预测。所提出的空间R藤模型将藤Copula的灵活性与使用变量位置之间的距离对空间依赖性进行建模的经典地质统计学思想相结合。特别地,该模型能够捕捉非高斯空间依赖性。为了开发和阐述我们的方法,我们考虑了在德国54个监测站观测到的日平均温度数据。我们确定了藤Copula参数与站点距离之间的关系,并利用这些关系来减少为拟合数据的54维R藤模型进行参数化所需的大量参数。基于距离的新模型参数化使得参数数量显著减少,并使在未观测位置的参数估计和预测变得可行。使用适当的评分技术对预测能力进行了验证,结果表明空间R藤Copula模型比高斯空间模型具有更好的性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验