Suppr超能文献

关于:阿梅尔沃尔特等人的《预测长期病假的方法》

Re: Amelsvoort et al. "Approaches for predicting long-term sickness absence".

作者信息

Schouten Lianne S, Joling Catelijne I, van der Gulden Joost Wj, Heymans Martijn W, Bültmann Ute, Roelen Corné Am

机构信息

ArboNed, PO Box 85091, 3508 AB Utrecht, The Netherlands.

出版信息

Scand J Work Environ Health. 2015 May 1;41(3):324. doi: 10.5271/sjweh.3481. Epub 2015 Feb 10.

Abstract

We would like to thank Van Amelsvoort et al (1) for the interest in our study (2) and take the opportunity to clarify here that none of the workers were sick-listed when they participated in the baseline health survey. We mentioned in the abstract that incident (ie, not prevalent) long-term sickness absence was retrieved from an occupational health register (2). Our explanation of how to interpret the area under the receiver operating characteristic (ROC) curve as measure of discrimination between workers with and without long-term sickness absence might have given the impression that the study population was a mix of workers with and without sickness absence. Throughout the paper, however, workers with long-term sickness absence refer to those not sick-listed at baseline who had incident long-term sickness absence during 1-year follow-up. We agree with the authors that instruments to predict long-term sickness absence for workers still at work (secondary prevention) should be distinguished from instruments for workers already on sick leave (tertiary prevention). The objective of our study was to investigate the Work Ability Index (WAI) as an instrument to predict future long-term sickness absence in non-sick-listed workers, ie, as an instrument for secondary prevention. Therefore, the term "screening" was used in the appropriate context. Van Amelsvoort et al (1) raise an interesting point when they state that including the outcome (sickness absence) as predictor in the model will shift the focus towards the prediction of recurrent sickness absence. Obviously, sickness absence is useless for predicting the first long-term sickness absence episode of an individual who has just finished education and enters the workforce. During working life, workers develop a sickness absence history either without sickness absence episodes (ie, zero-absenteeism) or with successive sickness absence episodes. In the latter case, Navarro et al (3) recommended to use statistical techniques for recurrent rather than independent events. A worker's sickness absence history is the strongest predictor of future sickness absence episodes (4, 5). From that perspective, it would be a missed opportunity not to include past sickness absence as variable in prediction models for future long-term sickness absence.

摘要

我们要感谢范·阿梅尔福特等人(1)对我们研究(2)的关注,并借此机会在此澄清,在参与基线健康调查时,没有一名工人被列入病假名单。我们在摘要中提到,新发(即非现患)长期病假情况是从职业健康登记册中获取的(2)。我们关于如何将受试者工作特征(ROC)曲线下面积解释为区分有长期病假和无长期病假工人的判别指标的解释,可能给人一种印象,即研究人群是有病假和无病假工人的混合群体。然而,在整篇论文中,有长期病假的工人指的是那些在基线时未被列入病假名单且在1年随访期间出现新发长期病假的工人。我们同意作者的观点,即预测仍在工作的工人长期病假(二级预防)的工具应与已休病假工人(三级预防)的工具区分开来。我们研究的目的是调查工作能力指数(WAI)作为预测未列入病假名单工人未来长期病假的一种工具,即作为二级预防的一种工具。因此,“筛查”一词是在适当的背景下使用的。范·阿梅尔福特等人(1)提出了一个有趣的观点,他们指出在模型中将结果(病假)作为预测因素会将重点转向复发性病假的预测。显然,病假对于预测刚完成学业并进入劳动力市场的个人首次长期病假发作是无用的。在工作期间,工人会形成无病假发作(即零缺勤)或连续病假发作的病假历史。在后一种情况下,纳瓦罗等人(3)建议使用针对复发事件而非独立事件的统计技术。工人的病假历史是未来病假发作的最强预测因素(4,5)。从这个角度来看,如果在未来长期病假预测模型中不将过去的病假作为变量纳入,将是一个错失的机会。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验