Suppr超能文献

急性低氧暴露时估计最大摄氧量的方法。

Methods to Estimate V˙O2max upon Acute Hypoxia Exposure.

机构信息

1School of Kinesiology, University of British Columbia, Vancouver, BC, CANADA; 2Department of Kinesiology, McMaster University, Hamilton, ON, CANADA; and 3School of Kinesiology, Auburn University, Auburn, AL.

出版信息

Med Sci Sports Exerc. 2015 Sep;47(9):1869-76. doi: 10.1249/MSS.0000000000000628.

Abstract

INTRODUCTION

Altitude and an individual's V˙O2max contribute to a decrease in V˙O2max under hypoxic conditions. The purpose of this study was to update previous reviews with recent research in order to quantitatively determine the individual and interacting effects of altitude and baseline V˙O2max on V˙O2max upon acute exposure to hypoxia while developing a statistical model to predict an individual's V˙O2max under hypoxic conditions.

METHODS

Meta-regression was conducted on 105 independent groups of participants (n = 958 subjects from 80 different studies). A series of regression models was tested. The final model included altitude, baseline V˙O2max, Alt2, baseline V˙O2max2, and the interaction of altitude with baseline V˙O2max.

RESULTS

A curvilinear model provided the best fit for metadata, explaining almost 80% of the variance in the null model. Nonlinear effects of Alt2 (β = -0.078; 95% confidence interval, -0.15 to -0.002) and baseline V˙O2max2 (β = -0.003; 95% confidence interval, -0.004 to -0.001) showed that V˙O2max decreases as altitude increases and that the decrease is greater in individuals with higher aerobic capacities. The interaction of these effects (β = -0.028; 95% confidence interval, -0.042 to -0.015) also showed that the effects of altitude were augmented with higher baseline aerobic capacities. Furthermore, the predictions of the model were fairly accurate in predicting individual decreases in V˙O2max (root-mean-squared error, 3.9 mL·kg(-1)·min(-1)).

CONCLUSIONS

These data provide a robust quantitative framework for the curvilinear and interacting effects of altitude and baseline V˙O2max in determining an individual's effective V˙O2max at altitude. This predictive model is useful for a priori power calculations, design of future experimental studies, and prediction of aerobic capacity declines in applied settings.

摘要

简介

海拔和个体的最大摄氧量(V˙O2max)都会导致在低氧环境下 V˙O2max 下降。本研究的目的是用最近的研究更新之前的综述,以便定量确定海拔和基线 V˙O2max 对急性低氧暴露时 V˙O2max 的个体和相互作用影响,并建立一个预测个体在低氧条件下 V˙O2max 的统计模型。

方法

对 105 个独立的参与者组(来自 80 个不同研究的 958 名受试者)进行荟萃回归分析。测试了一系列回归模型。最终模型包括海拔、基线 V˙O2max、Alt2、基线 V˙O2max2 以及海拔与基线 V˙O2max 的相互作用。

结果

一个曲线模型为元数据提供了最佳拟合,解释了空模型中近 80%的方差。Alt2(β=-0.078;95%置信区间,-0.15 至-0.002)和基线 V˙O2max2(β=-0.003;95%置信区间,-0.004 至-0.001)的非线性效应表明,随着海拔的升高,V˙O2max 会下降,而在有氧能力较高的个体中,下降幅度更大。这些效应的相互作用(β=-0.028;95%置信区间,-0.042 至-0.015)也表明,随着基线有氧能力的提高,海拔的影响会增强。此外,该模型的预测在预测个体 V˙O2max 的下降方面相当准确(均方根误差,3.9 mL·kg(-1)·min(-1))。

结论

这些数据为海拔和基线 V˙O2max 在确定个体在高海拔时的有效 V˙O2max 的曲线和相互作用效应提供了一个稳健的定量框架。这个预测模型对于先验功率计算、未来实验研究的设计以及在实际应用中预测有氧能力下降都很有用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验