Suppr超能文献

3T和7T多部位实时功能成像的原理验证研究:实施与验证

A proof-of-principle study of multi-site real-time functional imaging at 3T and 7T: Implementation and validation.

作者信息

Baecke Sebastian, Lützkendorf Ralf, Mallow Johannes, Luchtmann Michael, Tempelmann Claus, Stadler Jörg, Bernarding Johannes

机构信息

Institute for Biometry and Medical Informatics, Otto-von-Guericke-University Magdeburg.

Department of Neurosurgery, Otto-von-Guericke-University Magdeburg.

出版信息

Sci Rep. 2015 Feb 12;5:8413. doi: 10.1038/srep08413.

Abstract

Real-time functional Magnetic Resonance Imaging (rtfMRI) is used mainly for neurofeedback or for brain-computer interfaces (BCI). But multi-site rtfMRI could in fact help in the application of new interactive paradigms such as the monitoring of mutual information flow or the controlling of objects in shared virtual environments. For that reason, a previously developed framework that provided an integrated control and data analysis of rtfMRI experiments was extended to enable multi-site rtfMRI. Important new components included a data exchange platform for analyzing the data of both MR scanners independently and/or jointly. Information related to brain activation can be displayed separately or in a shared view. However, a signal calibration procedure had to be developed and integrated in order to permit the connecting of sites that had different hardware and to account for different inter-individual brain activation levels. The framework was successfully validated in a proof-of-principle study with twelve volunteers. Thus the overall concept, the calibration of grossly differing signals, and BCI functionality on each site proved to work as required. To model interactions between brains in real-time, more complex rules utilizing mutual activation patterns could easily be implemented to allow for new kinds of social fMRI experiments.

摘要

实时功能磁共振成像(rtfMRI)主要用于神经反馈或脑机接口(BCI)。但事实上,多站点rtfMRI有助于新交互范式的应用,如监测互信息流或在共享虚拟环境中控制对象。因此,一个先前开发的用于rtfMRI实验综合控制和数据分析的框架被扩展以支持多站点rtfMRI。重要的新组件包括一个数据交换平台,用于独立和/或联合分析两台磁共振扫描仪的数据。与大脑激活相关的信息可以单独显示或在共享视图中显示。然而,必须开发并集成一个信号校准程序,以允许连接具有不同硬件的站点,并考虑个体间不同的大脑激活水平。该框架在一项有12名志愿者参与的原理验证研究中得到成功验证。因此,整体概念、对差异极大的信号进行校准以及每个站点的BCI功能均按要求运行。为了实时模拟大脑之间的交互,可以轻松实施利用相互激活模式的更复杂规则,以开展新型社会功能磁共振成像实验。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d805/4325335/d7bf2741c9b1/srep08413-f1.jpg

相似文献

2
Self-regulation of human brain activity using simultaneous real-time fMRI and EEG neurofeedback.
Neuroimage. 2014 Jan 15;85 Pt 3:985-95. doi: 10.1016/j.neuroimage.2013.04.126. Epub 2013 May 11.
3
A new concept of a unified parameter management, experiment control, and data analysis in fMRI: application to real-time fMRI at 3T and 7T.
J Neurosci Methods. 2008 Oct 30;175(1):154-62. doi: 10.1016/j.jneumeth.2008.08.013. Epub 2008 Aug 19.
4
Real-time fMRI brain computer interfaces: self-regulation of single brain regions to networks.
Biol Psychol. 2014 Jan;95:4-20. doi: 10.1016/j.biopsycho.2013.04.010. Epub 2013 May 1.
5
Real-time fMRI processing with physiological noise correction - Comparison with off-line analysis.
J Neurosci Methods. 2015 Dec 30;256:117-21. doi: 10.1016/j.jneumeth.2015.08.033. Epub 2015 Sep 4.
6
Emotion Regulation Using Virtual Environments and Real-Time fMRI Neurofeedback.
Front Neurol. 2018 Jul 24;9:390. doi: 10.3389/fneur.2018.00390. eCollection 2018.
7
Real-time functional magnetic resonance imaging: methods and applications.
Magn Reson Imaging. 2007 Jul;25(6):989-1003. doi: 10.1016/j.mri.2007.02.007. Epub 2007 Apr 23.
8
Optimizing fMRI experimental design for MVPA-based BCI control: Combining the strengths of block and event-related designs.
Neuroimage. 2019 Feb 1;186:369-381. doi: 10.1016/j.neuroimage.2018.10.080. Epub 2018 Nov 1.
9
Decoding fMRI brain states in real-time.
Neuroimage. 2011 May 15;56(2):440-54. doi: 10.1016/j.neuroimage.2010.06.052. Epub 2010 Jun 30.

引用本文的文献

2
Leveraging ultra-high field (7T) MRI in psychiatric research.
Neuropsychopharmacology. 2024 Nov;50(1):85-102. doi: 10.1038/s41386-024-01980-6. Epub 2024 Sep 9.
4
A Guide to Literature Informed Decisions in the Design of Real Time fMRI Neurofeedback Studies: A Systematic Review.
Front Hum Neurosci. 2020 Feb 25;14:60. doi: 10.3389/fnhum.2020.00060. eCollection 2020.
5
No time for drifting: Comparing performance and applicability of signal detrending algorithms for real-time fMRI.
Neuroimage. 2019 May 1;191:421-429. doi: 10.1016/j.neuroimage.2019.02.058. Epub 2019 Feb 25.
6
Towards a mechanistic understanding of the human subcortex.
Nat Rev Neurosci. 2016 Dec 15;18(1):57-65. doi: 10.1038/nrn.2016.163.

本文引用的文献

1
Online tracking of the contents of conscious perception using real-time fMRI.
Front Neurosci. 2014 May 23;8:116. doi: 10.3389/fnins.2014.00116. eCollection 2014.
3
Interindividual synchronization of brain activity during live verbal communication.
Behav Brain Res. 2014 Jan 1;258:75-9. doi: 10.1016/j.bbr.2013.10.015. Epub 2013 Oct 18.
4
High-speed real-time resting-state FMRI using multi-slab echo-volumar imaging.
Front Hum Neurosci. 2013 Aug 26;7:479. doi: 10.3389/fnhum.2013.00479. eCollection 2013.
5
Toward a second-person neuroscience.
Behav Brain Sci. 2013 Aug;36(4):393-414. doi: 10.1017/S0140525X12000660.
6
Cross-brain neurofeedback: scientific concept and experimental platform.
PLoS One. 2013 May 17;8(5):e64590. doi: 10.1371/journal.pone.0064590. Print 2013.
7
Self-regulation of human brain activity using simultaneous real-time fMRI and EEG neurofeedback.
Neuroimage. 2014 Jan 15;85 Pt 3:985-95. doi: 10.1016/j.neuroimage.2013.04.126. Epub 2013 May 11.
8
Real-time fMRI neurofeedback: progress and challenges.
Neuroimage. 2013 Aug 1;76:386-99. doi: 10.1016/j.neuroimage.2013.03.033. Epub 2013 Mar 27.
9
Direct brain control and communication in paralysis.
Brain Topogr. 2014 Jan;27(1):4-11. doi: 10.1007/s10548-013-0282-1. Epub 2013 Mar 28.
10
Towards measuring brain function on groups of people in the real world.
PLoS One. 2012;7(9):e44676. doi: 10.1371/journal.pone.0044676. Epub 2012 Sep 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验