Suppr超能文献

运动前区和运动皮层调谐特性的时间演变反映了肢体生物力学的变化。

Temporal evolution of both premotor and motor cortical tuning properties reflect changes in limb biomechanics.

作者信息

Suminski Aaron J, Mardoum Philip, Lillicrap Timothy P, Hatsopoulos Nicholas G

机构信息

Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois; Department of Electrical Engineering and Computer Science, Milwaukee School of Engineering, Milwaukee, Wisconsin.

Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois;

出版信息

J Neurophysiol. 2015 Apr 1;113(7):2812-23. doi: 10.1152/jn.00486.2014. Epub 2015 Feb 11.

Abstract

A prevailing theory in the cortical control of limb movement posits that premotor cortex initiates a high-level motor plan that is transformed by the primary motor cortex (MI) into a low-level motor command to be executed. This theory implies that the premotor cortex is shielded from the motor periphery, and therefore, its activity should not represent the low-level features of movement. Contrary to this theory, we show that both dorsal (PMd) and ventral premotor (PMv) cortexes exhibit population-level tuning properties that reflect the biomechanical properties of the periphery similar to those observed in M1. We recorded single-unit activity from M1, PMd, and PMv and characterized their tuning properties while six rhesus macaques performed a reaching task in the horizontal plane. Each area exhibited a bimodal distribution of preferred directions during execution consistent with the known biomechanical anisotropies of the muscles and limb segments. Moreover, these distributions varied in orientation or shape from planning to execution. A network model shows that such population dynamics are linked to a change in biomechanics of the limb as the monkey begins to move, specifically to the state-dependent properties of muscles. We suggest that, like M1, neural populations in PMd and PMv are more directly linked with the motor periphery than previously thought.

摘要

一种关于肢体运动皮层控制的主流理论认为,运动前区皮层启动一个高级运动计划,该计划由初级运动皮层(M1)转化为一个待执行的低级运动指令。这一理论意味着运动前区皮层与运动外周相隔离,因此,其活动不应代表运动的低级特征。与该理论相反,我们发现背侧(PMd)和腹侧运动前区(PMv)皮层均表现出群体水平的调谐特性,这些特性反映了外周的生物力学特性,类似于在M1中观察到的特性。我们记录了M1、PMd和PMv的单神经元活动,并在六只恒河猴在水平面执行伸手抓取任务时,对它们的调谐特性进行了表征。在执行过程中,每个区域都表现出偏好方向的双峰分布,这与肌肉和肢体节段已知的生物力学各向异性一致。此外,从计划到执行,这些分布在方向或形状上有所不同。一个网络模型表明,随着猴子开始移动,这种群体动力学与肢体生物力学的变化有关,特别是与肌肉的状态依赖特性有关。我们认为,与M1一样,PMd和PMv中的神经群体与运动外周的联系比以前认为的更直接。

相似文献

1
Temporal evolution of both premotor and motor cortical tuning properties reflect changes in limb biomechanics.
J Neurophysiol. 2015 Apr 1;113(7):2812-23. doi: 10.1152/jn.00486.2014. Epub 2015 Feb 11.
2
Contrasting Modulatory Effects from the Dorsal and Ventral Premotor Cortex on Primary Motor Cortex Outputs.
J Neurosci. 2017 Jun 14;37(24):5960-5973. doi: 10.1523/JNEUROSCI.0462-17.2017. Epub 2017 May 23.
3
Encoding of Both Reaching and Grasping Kinematics in Dorsal and Ventral Premotor Cortices.
J Neurosci. 2017 Feb 15;37(7):1733-1746. doi: 10.1523/JNEUROSCI.1537-16.2016. Epub 2017 Jan 11.
4
Coordinate system representations of movement direction in the premotor cortex.
Exp Brain Res. 2007 Feb;176(4):652-7. doi: 10.1007/s00221-006-0818-7. Epub 2006 Dec 19.
5
Neuronal correlates of movement dynamics in the dorsal and ventral premotor area in the monkey.
Exp Brain Res. 2006 Jan;168(1-2):106-19. doi: 10.1007/s00221-005-0074-2. Epub 2005 Sep 22.

引用本文的文献

2
Initial and corrective submovement encoding differences within primary motor cortex during precision reaching.
J Neurophysiol. 2024 Aug 1;132(2):433-445. doi: 10.1152/jn.00269.2023. Epub 2024 Jul 10.
3
Linking cortex and contraction-Integrating models along the corticomuscular pathway.
Front Physiol. 2023 May 10;14:1095260. doi: 10.3389/fphys.2023.1095260. eCollection 2023.
4
Cyclic, Condition-Independent Activity in Primary Motor Cortex Predicts Corrective Movement Behavior.
eNeuro. 2022 Apr 13;9(2). doi: 10.1523/ENEURO.0354-21.2022. Print 2022 Mar-Apr.
5
Rotational dynamics in motor cortex are consistent with a feedback controller.
Elife. 2021 Nov 3;10:e67256. doi: 10.7554/eLife.67256.
6
Spatial neglect treatment: The brain's spatial-motor Aiming systems.
Neuropsychol Rehabil. 2022 Jun;32(5):662-688. doi: 10.1080/09602011.2020.1862678. Epub 2021 May 3.
7
Condition-Dependent Neural Dimensions Progressively Shift during Reach to Grasp.
Cell Rep. 2018 Dec 11;25(11):3158-3168.e3. doi: 10.1016/j.celrep.2018.11.057.
9
Perspectives on classical controversies about the motor cortex.
J Neurophysiol. 2017 Sep 1;118(3):1828-1848. doi: 10.1152/jn.00795.2016. Epub 2017 Jun 14.
10
Temporally Segmented Directionality in the Motor Cortex.
Cereb Cortex. 2018 Jul 1;28(7):2326-2339. doi: 10.1093/cercor/bhx133.

本文引用的文献

1
Cortical activity in the null space: permitting preparation without movement.
Nat Neurosci. 2014 Mar;17(3):440-8. doi: 10.1038/nn.3643. Epub 2014 Feb 2.
3
Movement representation in the primary motor cortex and its contribution to generalizable EMG predictions.
J Neurophysiol. 2013 Feb;109(3):666-78. doi: 10.1152/jn.00331.2012. Epub 2012 Nov 14.
4
Neural population dynamics during reaching.
Nature. 2012 Jul 5;487(7405):51-6. doi: 10.1038/nature11129.
5
Primary motor cortex underlies multi-joint integration for fast feedback control.
Nature. 2011 Sep 28;478(7369):387-90. doi: 10.1038/nature10436.
6
The influence of predicted arm biomechanics on decision making.
J Neurophysiol. 2011 Jun;105(6):3022-33. doi: 10.1152/jn.00975.2010. Epub 2011 Mar 30.
7
Kinetic trajectory decoding using motor cortical ensembles.
IEEE Trans Neural Syst Rehabil Eng. 2009 Oct;17(5):487-96. doi: 10.1109/TNSRE.2009.2029313. Epub 2009 Aug 7.
8
Single-unit stability using chronically implanted multielectrode arrays.
J Neurophysiol. 2009 Aug;102(2):1331-9. doi: 10.1152/jn.90920.2008. Epub 2009 Jun 17.
10
Prediction of upper limb muscle activity from motor cortical discharge during reaching.
J Neural Eng. 2007 Dec;4(4):369-79. doi: 10.1088/1741-2560/4/4/003. Epub 2007 Nov 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验