Suppr超能文献

量子热力学第二定律。

The second laws of quantum thermodynamics.

作者信息

Brandão Fernando, Horodecki Michał, Ng Nelly, Oppenheim Jonathan, Wehner Stephanie

机构信息

Department of Computer Science, University College London, London WC1E 6BT, United Kingdom;

Instytut Fizyki Teoretycznej i Astrofizyki, University of Gdansk, 80-952 Gdansk, Poland;

出版信息

Proc Natl Acad Sci U S A. 2015 Mar 17;112(11):3275-9. doi: 10.1073/pnas.1411728112. Epub 2015 Feb 9.

Abstract

The second law of thermodynamics places constraints on state transformations. It applies to systems composed of many particles, however, we are seeing that one can formulate laws of thermodynamics when only a small number of particles are interacting with a heat bath. Is there a second law of thermodynamics in this regime? Here, we find that for processes which are approximately cyclic, the second law for microscopic systems takes on a different form compared to the macroscopic scale, imposing not just one constraint on state transformations, but an entire family of constraints. We find a family of free energies which generalize the traditional one, and show that they can never increase. The ordinary second law relates to one of these, with the remainder imposing additional constraints on thermodynamic transitions. We find three regimes which determine which family of second laws govern state transitions, depending on how cyclic the process is. In one regime one can cause an apparent violation of the usual second law, through a process of embezzling work from a large system which remains arbitrarily close to its original state. These second laws are relevant for small systems, and also apply to individual macroscopic systems interacting via long-range interactions. By making precise the definition of thermal operations, the laws of thermodynamics are unified in this framework, with the first law defining the class of operations, the zeroth law emerging as an equivalence relation between thermal states, and the remaining laws being monotonicity of our generalized free energies.

摘要

热力学第二定律对状态转变施加了限制。它适用于由许多粒子组成的系统,然而,我们发现当只有少量粒子与热库相互作用时,也可以制定热力学定律。在这种情况下是否存在热力学第二定律呢?在这里,我们发现对于近似循环的过程,微观系统的第二定律与宏观尺度相比呈现出不同的形式,它不仅对状态转变施加一个限制,而是施加一整个系列的限制。我们发现了一族自由能,它们推广了传统的自由能,并表明它们永远不会增加。普通的第二定律涉及其中之一,其余的则对热力学转变施加额外的限制。我们发现有三种情况,这取决于过程的循环程度,决定了哪一族第二定律支配状态转变。在一种情况下,可以通过从一个始终任意接近其原始状态的大系统中挪用功的过程,导致对通常第二定律的明显违反。这些第二定律与小系统相关,也适用于通过长程相互作用相互作用的单个宏观系统。通过精确热操作的定义,热力学定律在这个框架中得到统一,第一定律定义了操作的类别,第零定律作为热状态之间的等价关系出现,其余定律则是我们广义自由能的单调性。

相似文献

1
The second laws of quantum thermodynamics.量子热力学第二定律。
Proc Natl Acad Sci U S A. 2015 Mar 17;112(11):3275-9. doi: 10.1073/pnas.1411728112. Epub 2015 Feb 9.
3
Quantum Rényi relative entropies affirm universality of thermodynamics.量子雷尼相对熵证实了热力学的普适性。
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Oct;92(4):042161. doi: 10.1103/PhysRevE.92.042161. Epub 2015 Oct 29.
6
Statistical thermodynamics of quantum Brownian motion: construction of perpetuum mobile of the second kind.量子布朗运动的统计热力学:第二类永动机的构建。
Phys Rev E Stat Nonlin Soft Matter Phys. 2002 Sep;66(3 Pt 2A):036102. doi: 10.1103/PhysRevE.66.036102. Epub 2002 Sep 5.
9
Coherence Manipulation in Asymmetry and Thermodynamics.不对称与热力学中的相干操纵
Phys Rev Lett. 2024 May 17;132(20):200201. doi: 10.1103/PhysRevLett.132.200201.

引用本文的文献

4
The Thermomajorization Polytope and Its Degeneracies.热优超多面体及其简并性
Entropy (Basel). 2024 Jan 24;26(2):106. doi: 10.3390/e26020106.
5
Trends in the Second Law of Thermodynamics.热力学第二定律的发展趋势。
Entropy (Basel). 2023 Sep 10;25(9):1321. doi: 10.3390/e25091321.
6
Quantum entropy and central limit theorem.量子熵和中心极限定理。
Proc Natl Acad Sci U S A. 2023 Jun 20;120(25):e2304589120. doi: 10.1073/pnas.2304589120. Epub 2023 Jun 12.
7
Resource theory of quantum scrambling.量子混叠的资源理论。
Proc Natl Acad Sci U S A. 2023 Apr 25;120(17):e2217031120. doi: 10.1073/pnas.2217031120. Epub 2023 Apr 18.
8
The nonequilibrium cost of accurate information processing.准确信息处理的非平衡成本。
Nat Commun. 2022 Nov 22;13(1):7155. doi: 10.1038/s41467-022-34541-w.
9
Representing preorders with injective monotones.用单射单调函数表示预序。
Theory Decis. 2022;93(4):663-690. doi: 10.1007/s11238-021-09861-w. Epub 2022 Jan 24.

本文引用的文献

1
2
Entanglement generation is not necessary for optimal work extraction.纠缠态的产生对于最优工作提取并非必需。
Phys Rev Lett. 2013 Dec 13;111(24):240401. doi: 10.1103/PhysRevLett.111.240401. Epub 2013 Dec 9.
5
Entanglement boost for extractable work from ensembles of quantum batteries.量子电池系综可提取功的纠缠增强效应。
Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Apr;87(4):042123. doi: 10.1103/PhysRevE.87.042123. Epub 2013 Apr 25.
6
Minimal universal quantum heat machine.最小通用量子热机
Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Jan;87(1):012140. doi: 10.1103/PhysRevE.87.012140. Epub 2013 Jan 25.
7
The thermodynamic meaning of negative entropy.负熵的热力学意义。
Nature. 2011 Jun 2;474(7349):61-3. doi: 10.1038/nature10123.
8
How small can thermal machines be? The smallest possible refrigerator.热机可以有多小?最小可能的冰箱。
Phys Rev Lett. 2010 Sep 24;105(13):130401. doi: 10.1103/PhysRevLett.105.130401. Epub 2010 Sep 21.
9
Quantum lubrication: suppression of friction in a first-principles four-stroke heat engine.量子润滑:第一性原理四冲程热机中摩擦的抑制
Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Feb;73(2 Pt 2):025107. doi: 10.1103/PhysRevE.73.025107. Epub 2006 Feb 22.
10
Are the laws of entanglement theory thermodynamical?纠缠理论的定律是热力学的吗?
Phys Rev Lett. 2002 Dec 9;89(24):240403. doi: 10.1103/PhysRevLett.89.240403. Epub 2002 Nov 22.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验