Suppr超能文献

蔓延火灾中爆发事件的预警信号。

Warning signals for eruptive events in spreading fires.

作者信息

Fox Jerome M, Whitesides George M

机构信息

Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138;

Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138; Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138; and The Kavli Institute for Bionano Science and Technology, Harvard University, Cambridge, MA 02138

出版信息

Proc Natl Acad Sci U S A. 2015 Feb 24;112(8):2378-83. doi: 10.1073/pnas.1417043112. Epub 2015 Feb 9.

Abstract

Spreading fires are noisy (and potentially chaotic) systems in which transitions in dynamics are notoriously difficult to predict. As flames move through spatially heterogeneous environments, sudden shifts in temperature, wind, or topography can generate combustion instabilities, or trigger self-stabilizing feedback loops, that dramatically amplify the intensities and rates with which fires propagate. Such transitions are rarely captured by predictive models of fire behavior and, thus, complicate efforts in fire suppression. This paper describes a simple, remarkably instructive physical model for examining the eruption of small flames into intense, rapidly moving flames stabilized by feedback between wind and fire (i.e., "wind-fire coupling"-a mechanism of feedback particularly relevant to forest fires), and it presents evidence that characteristic patterns in the dynamics of spreading flames indicate when such transitions are likely to occur. In this model system, flames propagate along strips of nitrocellulose with one of two possible modes of propagation: a slow, structured mode, and a fast, unstructured mode sustained by wind-fire coupling. Experimental examination of patterns in dynamics that emerge near bifurcation points suggests that symptoms of critical slowing down (i.e., the slowed recovery of the system from perturbations as it approaches tipping points) warn of impending transitions to the unstructured mode. Findings suggest that slowing responses of spreading flames to sudden changes in environment (e.g., wind, terrain, temperature) may anticipate the onset of intense, feedback-stabilized modes of propagation (e.g., "blowup fires" in forests).

摘要

蔓延的火灾是嘈杂(且可能混乱)的系统,其动态转变极难预测。当火焰在空间异质环境中移动时,温度、风或地形的突然变化会产生燃烧不稳定性,或触发自我稳定的反馈回路,从而极大地放大火灾蔓延的强度和速度。此类转变很少被火灾行为预测模型捕捉到,因此给灭火工作带来了困难。本文描述了一个简单且极具启发性的物理模型,用于研究小火焰爆发成由风和火之间的反馈(即“风火耦合”——一种与森林火灾特别相关的反馈机制)稳定的强烈、快速移动火焰的过程,并提供证据表明蔓延火焰动态中的特征模式表明此类转变可能何时发生。在这个模型系统中,火焰沿着硝化纤维条带以两种可能的传播模式之一传播:一种是缓慢、有结构的模式,另一种是由风火耦合维持的快速、无结构的模式。对分岔点附近出现的动态模式进行实验研究表明,临界减速的症状(即系统在接近临界点时从扰动中恢复的速度减慢)预示着即将转变为无结构模式。研究结果表明,蔓延火焰对环境突然变化(如风、地形、温度)的反应减慢可能预示着强烈的、由反馈稳定的传播模式(如森林中的“爆发性火灾”)的开始。

相似文献

1
Warning signals for eruptive events in spreading fires.蔓延火灾中爆发事件的预警信号。
Proc Natl Acad Sci U S A. 2015 Feb 24;112(8):2378-83. doi: 10.1073/pnas.1417043112. Epub 2015 Feb 9.
5
Wildfire patterns and landscape changes in Mediterranean oak woodlands.地中海橡树林的野火模式和景观变化。
Sci Total Environ. 2015 Dec 1;536:338-352. doi: 10.1016/j.scitotenv.2015.07.087. Epub 2015 Jul 29.

引用本文的文献

1
Learning reaction-transport coupling from thermal waves.从热波中学习反应-输运耦合。
Nat Commun. 2024 Nov 15;15(1):9930. doi: 10.1038/s41467-024-54177-2.
3
Periodic recurrent waves of Covid-19 epidemics and vaccination campaign.新冠疫情的周期性反复浪潮与疫苗接种运动。
Chaos Solitons Fractals. 2022 Jul;160:112216. doi: 10.1016/j.chaos.2022.112216. Epub 2022 May 18.
5
Fluctuations uncover a distinct class of traveling waves.涨落揭示了一类独特的行波。
Proc Natl Acad Sci U S A. 2018 Apr 17;115(16):E3645-E3654. doi: 10.1073/pnas.1715737115. Epub 2018 Apr 2.
6
Grip on complexity in chemical reaction networks.把握化学反应网络中的复杂性。
Beilstein J Org Chem. 2017 Jul 28;13:1486-1497. doi: 10.3762/bjoc.13.147. eCollection 2017.
7
Molecular Engineering of Robustness and Resilience in Enzymatic Reaction Networks.酶反应网络中稳健性和弹性的分子工程
J Am Chem Soc. 2017 Jun 21;139(24):8146-8151. doi: 10.1021/jacs.7b00632. Epub 2017 Jun 13.
9
Small-scale flame dynamics provide limited insight into wildfire behavior.小规模火焰动态对野火行为的洞察有限。
Proc Natl Acad Sci U S A. 2015 Aug 4;112(31):E4164. doi: 10.1073/pnas.1506877112. Epub 2015 Jul 16.
10
Reply to Sullivan and Cruz: Defense of a simplified physical model.对沙利文和克鲁兹的回应:对一个简化物理模型的辩护
Proc Natl Acad Sci U S A. 2015 Aug 4;112(31):E4165. doi: 10.1073/pnas.1511297112. Epub 2015 Jul 16.

本文引用的文献

2
Wildfire science. Computing a better fire forecast.野火科学。计算更准确的火灾预测。
Science. 2013 Aug 9;341(6146):609-11. doi: 10.1126/science.341.6146.609.
4
Anticipating critical transitions.预判关键转折点。
Science. 2012 Oct 19;338(6105):344-8. doi: 10.1126/science.1225244.
9
Early-warning signals for critical transitions.关键转变的早期预警信号。
Nature. 2009 Sep 3;461(7260):53-9. doi: 10.1038/nature08227.
10
Slowing down as an early warning signal for abrupt climate change.气候突变早期预警信号:气候放缓
Proc Natl Acad Sci U S A. 2008 Sep 23;105(38):14308-12. doi: 10.1073/pnas.0802430105. Epub 2008 Sep 11.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验