Suppr超能文献

嵌段共聚物自组装增强的蛋白质水凝胶的结构与力学响应

Structure and Mechanical Response of Protein Hydrogels Reinforced by Block Copolymer Self-Assembly.

作者信息

Glassman Matthew J, Olsen Bradley D

机构信息

Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

出版信息

Soft Matter. 2013 Aug 7;9(29):6814-6823. doi: 10.1039/C3SM00102D.

Abstract

A strategy for responsively toughening an injectable protein hydrogel has been implemented by incorporating an associative protein as the midblock in triblock copolymers with thermoresponsive poly(N-isopropylacrylamide) (PNIPAM) endblocks, producing materials with a low yield stress necessary for injectability and durability required for load-bearing applications post-injection. Responsive reinforcement triggered by PNIPAM association leads to significant increases in the gel's elastic modulus as well as its resistance to creep. The performance of these materials is a strong function of molecular design, with certain formulations reaching elastic moduli of up to 130 kPa, effectively reinforced by a factor of 14 over their low temperature moduli, and having stress relaxation times increased by up to a factor of 50. The nanostructural origins of these thermoresponsive enhancements were explored, demonstrating that large micellar cores, high PNIPAM volume fractions, and high densities of associating groups in the protein corona lead to the greatest reinforcement of the gel's elastic modulus. Gels with the largest micelles and the highest packing fractions also had the longest relaxation times in the reinforced state. These combined structure and mechanics studies reveal that control of both the micellar and protein networks is critical for making high performance gels relevant for biomedical applications.

摘要

通过将缔合蛋白作为三嵌段共聚物的中间嵌段,与热响应性聚(N-异丙基丙烯酰胺)(PNIPAM)端嵌段结合,实现了一种使可注射蛋白质水凝胶响应性增韧的策略,从而制备出具有低屈服应力的材料,该应力对于注射性是必需的,而对于注射后承重应用所需的耐久性也是必需的。由PNIPAM缔合引发的响应性增强导致凝胶的弹性模量以及其抗蠕变性显著增加。这些材料的性能强烈依赖于分子设计,某些配方的弹性模量高达130 kPa,比其低温模量有效增强了14倍,应力松弛时间增加了高达50倍。探索了这些热响应增强的纳米结构起源,表明大的胶束核心、高的PNIPAM体积分数以及蛋白质冠层中缔合基团的高密度导致凝胶弹性模量的最大增强。具有最大胶束和最高堆积分数的凝胶在增强状态下也具有最长的松弛时间。这些结构和力学研究相结合表明,控制胶束网络和蛋白质网络对于制备与生物医学应用相关的高性能凝胶至关重要。

相似文献

1
2
Reinforcement of Shear Thinning Protein Hydrogels by Responsive Block Copolymer Self-Assembly.
Adv Funct Mater. 2013 Mar 6;23(9):1182-1193. doi: 10.1002/adfm.201202034.
4
Multimodal Shape Transformation of Dual-Responsive DNA Block Copolymers.
J Am Chem Soc. 2016 Nov 16;138(45):14941-14947. doi: 10.1021/jacs.6b07985. Epub 2016 Nov 8.
5
Nanoparticle-reinforced associative network hydrogels.
Langmuir. 2008 Nov 18;24(22):13148-54. doi: 10.1021/la8015518. Epub 2008 Oct 24.
7
Structure and rheology of dual-associative protein hydrogels under nonlinear shear flow.
Soft Matter. 2017 Nov 22;13(45):8511-8524. doi: 10.1039/c7sm00638a.
8
Photo- and thermo-responsive multicompartment hydrogels for synergistic delivery of gemcitabine and doxorubicin.
J Control Release. 2017 Aug 10;259:149-159. doi: 10.1016/j.jconrel.2016.11.007. Epub 2016 Nov 16.

引用本文的文献

1
Control of Nanoscale Protein Unfolding Defines Network Architecture and Mechanics of Protein Hydrogels.
ACS Nano. 2021 Jul 27;15(7):11296-11308. doi: 10.1021/acsnano.1c00353. Epub 2021 Jul 2.
2
Bioprinting 101: Design, Fabrication, and Evaluation of Cell-Laden 3D Bioprinted Scaffolds.
Tissue Eng Part A. 2020 Mar;26(5-6):318-338. doi: 10.1089/ten.TEA.2019.0298.
4
Adaptable hydrogel networks with reversible linkages for tissue engineering.
Adv Mater. 2015 Jul 1;27(25):3717-36. doi: 10.1002/adma.201501558. Epub 2015 May 19.
5
Opportunities for multicomponent hybrid hydrogels in biomedical applications.
Biomacromolecules. 2015 Jan 12;16(1):28-42. doi: 10.1021/bm501361c. Epub 2014 Dec 10.
6
Oxidatively Responsive Chain Extension to Entangle Engineered Protein Hydrogels.
Macromolecules. 2014 Jan 28;47(2):791-799. doi: 10.1021/ma401684w.
7
Controlling topological entanglement in engineered protein hydrogels with a variety of thiol coupling chemistries.
Front Chem. 2014 May 14;2:23. doi: 10.3389/fchem.2014.00023. eCollection 2014.

本文引用的文献

2
Reinforcement of Shear Thinning Protein Hydrogels by Responsive Block Copolymer Self-Assembly.
Adv Funct Mater. 2013 Mar 6;23(9):1182-1193. doi: 10.1002/adfm.201202034.
3
Protein-engineered injectable hydrogel to improve retention of transplanted adipose-derived stem cells.
Adv Healthc Mater. 2013 Mar;2(3):428-32. doi: 10.1002/adhm.201200293. Epub 2012 Sep 28.
4
Mechano-Responsive Hydrogels Crosslinked by Block Copolymer Micelles.
Soft Matter. 2012 Oct 28;8(40):10233-10237. doi: 10.1039/C2SM26566D.
5
Highly stretchable and tough hydrogels.
Nature. 2012 Sep 6;489(7414):133-6. doi: 10.1038/nature11409.
6
Injectable solid peptide hydrogel as a cell carrier: effects of shear flow on hydrogels and cell payload.
Langmuir. 2012 Apr 10;28(14):6076-87. doi: 10.1021/la2041746. Epub 2012 Mar 27.
8
Injectable shear-thinning hydrogels engineered with a self-assembling Dock-and-Lock mechanism.
Biomaterials. 2012 Mar;33(7):2145-53. doi: 10.1016/j.biomaterials.2011.11.076. Epub 2011 Dec 16.
9
Improving viability of stem cells during syringe needle flow through the design of hydrogel cell carriers.
Tissue Eng Part A. 2012 Apr;18(7-8):806-15. doi: 10.1089/ten.TEA.2011.0391. Epub 2011 Dec 20.
10
Encapsulation of curcumin in self-assembling peptide hydrogels as injectable drug delivery vehicles.
Biomaterials. 2011 Sep;32(25):5906-14. doi: 10.1016/j.biomaterials.2011.04.069. Epub 2011 May 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验