Cho Kwang-Hyun, Joo Jae Il, Shin Dongkwan, Kim Dongsan, Park Sang-Min
Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.
Wiley Interdiscip Rev Syst Biol Med. 2016 Sep;8(5):366-77. doi: 10.1002/wsbm.1346. Epub 2016 Jun 21.
Most biological processes have been considered to be irreversible for a long time, but some recent studies have shown the possibility of their reversion at a cellular level. How can we then understand the reversion of such biological processes? We introduce a unified conceptual framework based on the attractor landscape, a molecular phase portrait describing the dynamics of a molecular regulatory network, and the phenotype landscape, a map of phenotypes determined by the steady states of particular output molecules in the attractor landscape. In this framework, irreversible processes involve reshaping of the phenotype landscape, and the landscape reshaping causes the irreversibility of processes. We suggest reverse control by network rewiring which changes network dynamics with constant perturbation, resulting in the restoration of the original phenotype landscape. The proposed framework provides a conceptual basis for the reverse control of irreversible biological processes through network rewiring. WIREs Syst Biol Med 2016, 8:366-377. doi: 10.1002/wsbm.1346 For further resources related to this article, please visit the WIREs website.
长期以来,大多数生物过程都被认为是不可逆的,但最近的一些研究表明,在细胞水平上它们有可能发生逆转。那么,我们该如何理解这种生物过程的逆转呢?我们引入了一个统一的概念框架,该框架基于吸引子景观(一种描述分子调控网络动态的分子相图)和表型景观(由吸引子景观中特定输出分子的稳态所决定的表型图谱)。在这个框架中,不可逆过程涉及表型景观的重塑,而景观重塑导致了过程的不可逆性。我们提出通过网络重连进行反向控制,即通过恒定扰动改变网络动态,从而恢复原始的表型景观。所提出的框架为通过网络重连对不可逆生物过程进行反向控制提供了概念基础。《WIREs系统生物学与医学》2016年,8:366 - 377。doi:10.1002/wsbm.1346 有关本文的更多资源,请访问WIREs网站。