Suppr超能文献

细胞色素P450羟化反应的从头算动力学

Ab initio dynamics of the cytochrome P450 hydroxylation reaction.

作者信息

Elenewski Justin E, Hackett John C

机构信息

Department of Physiology and Biophysics and The Massey Cancer Center, School of Medicine, Virginia Commonwealth University, 401 College Street, Richmond, Virginia 23219-1540, USA.

出版信息

J Chem Phys. 2015 Feb 14;142(6):064307. doi: 10.1063/1.4907733.

Abstract

The iron(IV)-oxo porphyrin π-cation radical known as Compound I is the primary oxidant within the cytochromes P450, allowing these enzymes to affect the substrate hydroxylation. In the course of this reaction, a hydrogen atom is abstracted from the substrate to generate hydroxyiron(IV) porphyrin and a substrate-centered radical. The hydroxy radical then rebounds from the iron to the substrate, yielding the hydroxylated product. While Compound I has succumbed to theoretical and spectroscopic characterization, the associated hydroxyiron species is elusive as a consequence of its very short lifetime, for which there are no quantitative estimates. To ascertain the physical mechanism underlying substrate hydroxylation and probe this timescale, ab initio molecular dynamics simulations and free energy calculations are performed for a model of Compound I catalysis. Semiclassical estimates based on these calculations reveal the hydrogen atom abstraction step to be extremely fast, kinetically comparable to enzymes such as carbonic anhydrase. Using an ensemble of ab initio simulations, the resultant hydroxyiron species is found to have a similarly short lifetime, ranging between 300 fs and 3600 fs, putatively depending on the enzyme active site architecture. The addition of tunneling corrections to these rates suggests a strong contribution from nuclear quantum effects, which should accelerate every step of substrate hydroxylation by an order of magnitude. These observations have strong implications for the detection of individual hydroxylation intermediates during P450 catalysis.

摘要

被称为化合物I的铁(IV)-氧代卟啉π-阳离子自由基是细胞色素P450中的主要氧化剂,使这些酶能够影响底物的羟基化反应。在该反应过程中,一个氢原子从底物上被夺取,生成羟基铁(IV)卟啉和一个以底物为中心的自由基。然后羟基自由基从铁原子反弹到底物上,生成羟基化产物。虽然化合物I已经通过理论和光谱表征得到了研究,但相关的羟基铁物种由于其极短的寿命而难以捉摸,目前尚无定量估计。为了确定底物羟基化反应背后的物理机制并探究这个时间尺度,我们对化合物I催化模型进行了从头算分子动力学模拟和自由能计算。基于这些计算的半经典估计表明,氢原子夺取步骤极其迅速,在动力学上与碳酸酐酶等酶相当。通过一组从头算模拟发现,生成的羟基铁物种寿命同样很短,在300飞秒到3600飞秒之间,推测这取决于酶活性位点的结构。对这些速率加上隧道效应校正表明核量子效应有很大贡献,这应该会使底物羟基化的每一步加速一个数量级。这些观察结果对在P450催化过程中检测单个羟基化中间体具有重要意义。

相似文献

1
Ab initio dynamics of the cytochrome P450 hydroxylation reaction.
J Chem Phys. 2015 Feb 14;142(6):064307. doi: 10.1063/1.4907733.
2
Effect of the axial ligand on substrate sulfoxidation mediated by iron(IV)-oxo porphyrin cation radical oxidants.
Chemistry. 2011 May 23;17(22):6196-205. doi: 10.1002/chem.201003187. Epub 2011 Apr 5.
8
Oxoiron(IV) porphyrin pi-cation radical complexes with a chameleon behavior in cytochrome P450 model reactions.
J Biol Inorg Chem. 2005 May;10(3):294-304. doi: 10.1007/s00775-005-0641-9. Epub 2005 Apr 13.

引用本文的文献

2
Mechanism of Melatonin Metabolism by CYP1A1: What Determines the Bifurcation Pathways of Hydroxylation versus Deformylation?
J Phys Chem B. 2022 Nov 24;126(46):9591-9606. doi: 10.1021/acs.jpcb.2c07200. Epub 2022 Nov 15.
3
Mapping hole hopping escape routes in proteins.
Proc Natl Acad Sci U S A. 2019 Aug 6;116(32):15811-15816. doi: 10.1073/pnas.1906394116. Epub 2019 Jul 24.

本文引用的文献

1
How Does Ethene Inactivate Cytochrome P450 En Route to Its Epoxidation? A Density Functional Study.
Angew Chem Int Ed Engl. 2001 Aug 3;40(15):2871-2874. doi: 10.1002/1521-3773(20010803)40:15<2871::AID-ANIE2871>3.0.CO;2-R.
2
QM/MM molecular dynamics studies of metal binding proteins.
Biomolecules. 2014 Jul 8;4(3):616-45. doi: 10.3390/biom4030616.
3
Iron(IV)hydroxide pK(a) and the role of thiolate ligation in C-H bond activation by cytochrome P450.
Science. 2013 Nov 15;342(6160):825-9. doi: 10.1126/science.1244373.
5
Water oxidation by a cytochrome p450: mechanism and function of the reaction.
PLoS One. 2013 Apr 25;8(4):e61897. doi: 10.1371/journal.pone.0061897. Print 2013.
7
The reaction mechanisms of heme catalases: an atomistic view by ab initio molecular dynamics.
Arch Biochem Biophys. 2012 Sep 15;525(2):121-30. doi: 10.1016/j.abb.2012.04.004. Epub 2012 Apr 10.
8
Coupled electron transfer and proton hopping in the final step of CYP19-catalyzed androgen aromatization.
Biochemistry. 2012 Apr 10;51(14):3039-49. doi: 10.1021/bi300017p. Epub 2012 Mar 27.
9
A grid-based Bader analysis algorithm without lattice bias.
J Phys Condens Matter. 2009 Feb 25;21(8):084204. doi: 10.1088/0953-8984/21/8/084204. Epub 2009 Jan 30.
10
Proton transfer drives protein radical formation in Helicobacter pylori catalase but not in Penicillium vitale catalase.
J Am Chem Soc. 2011 Mar 30;133(12):4285-98. doi: 10.1021/ja1110706. Epub 2011 Mar 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验