Sung Po-Hsun, Kan Chung-Dann, Chen Wei-Ling, Jang Ling-Sheng, Wang Jhing-Fa
Department of Electrical Engineering, National Cheng Kung University, No. 1, University Road, Tainan City, 701, Taiwan, ROC,
Med Biol Eng Comput. 2015 May;53(5):393-403. doi: 10.1007/s11517-014-1241-z. Epub 2015 Feb 15.
For end-stage renal disease patients undergoing hemodialysis, thrombosis caused by stenosis hinders the long-term use of vascular access. However, traditional spectral bruit analysis techniques for detecting the severity of vascular access stenosis are not robust. Accordingly, the present study proposes an automated method for mimicking a trained practitioner in performing the auscultation process. In the proposed approach, the bruit obtained using a standard phonoangiographic method is transformed into the time-frequency domain, and two spectro-temporal features, namely the auditory spectrum flux and the auditory spectral centroid, are then extracted. The distributions of the two features are analyzed using a multivariate Gaussian distribution (MGD) model. Finally, the distribution parameters of the MGD model are used to detect the presence (or otherwise) of vascular access stenosis. The validity of the proposed approach is investigated using the phonoangiography signals obtained from 16 hemodialysis patients with straight arteriovenous grafts over the upper arm region. The results show that the MGD covariance matrix coefficient of the auditory spectral centroid feature yields an accuracy of 83.87 % in detecting significant vascular access stenosis. Thus, the proposed method has significant potential for the applications of vascular access stenosis detection.
对于接受血液透析的终末期肾病患者,由狭窄引起的血栓形成会阻碍血管通路的长期使用。然而,用于检测血管通路狭窄严重程度的传统频谱杂音分析技术并不稳健。因此,本研究提出了一种自动方法,用于模仿训练有素的从业者进行听诊过程。在所提出的方法中,使用标准的血管音图方法获得的杂音被转换到时间-频率域,然后提取两个频谱-时间特征,即听觉频谱通量和听觉频谱质心。使用多元高斯分布(MGD)模型分析这两个特征的分布。最后,使用MGD模型的分布参数来检测血管通路狭窄的存在(或不存在)。使用从16名在上臂区域有直动静脉移植物的血液透析患者获得的血管音图信号来研究所提出方法的有效性。结果表明,听觉频谱质心特征的MGD协方差矩阵系数在检测显著的血管通路狭窄时准确率为83.87%。因此,所提出的方法在血管通路狭窄检测的应用中具有显著潜力。