Suppr超能文献

在钌基非晶态杂化结构中现场构建原子界面以实现太阳能制氢。

In situ constructing atomic interface in ruthenium-based amorphous hybrid-structure towards solar hydrogen evolution.

机构信息

National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, P. R. China.

State Key Laboratory of Molecular Reaction Dynamics and Dynamics Research Center for Energy and Environmental Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, P. R. China.

出版信息

Nat Commun. 2023 Mar 28;14(1):1720. doi: 10.1038/s41467-023-37451-7.

Abstract

The rational steering and construction of efficient and stable atomic interfaces is highly desirable but rather challenging in solar energy conversion. Here, we report an in-situ oxygen impregnation strategy to build abundant atomic interfaces composed of homogeneous Ru and RuO amorphous hybrid-mixture with ultrafast charge transfer, for solar hydrogen evolution with sacrificial agent free. Via in-situ synchrotron X-ray absorption and photoelectron spectroscopies, we can precisely track and identify the gradual formation of atomic interfaces towards homogeneous Ru-RuO hybrid-structure at the atomic level. Benefiting from the abundant interfaces, the amorphous RuO sites can intrinsically trap the photoexcited hole within an ultrafast process (<100 fs), and the amorphous Ru sites enable subsequent electron transfer (~1.73 ps). Hence, this hybrid-structure triggers long-lived charge-separated states, and results in a high hydrogen evolution rate of 60.8 μmol·h. This design integrating the two sites fulfilled each half-reaction in a single hybrid-structure suggests potential guidelines towards efficient artificial photosynthesis.

摘要

在太阳能转化中,合理引导和构建高效稳定的原子界面是非常理想但极具挑战性的。在这里,我们报告了一种原位氧浸渍策略,用于构建丰富的原子界面,这些界面由均匀的 Ru 和具有超快电荷转移的 RuO 非晶混合混合物组成,用于无牺牲剂的太阳能制氢。通过原位同步辐射 X 射线吸收和光电子能谱,我们可以在原子水平上精确跟踪和识别原子界面朝着均匀 Ru-RuO 混合结构的逐步形成。得益于丰富的界面,非晶态 RuO 位可以在超快过程(<100 fs)内内在捕获光激发的空穴,而非晶态 Ru 位可以实现随后的电子转移(~1.73 ps)。因此,这种混合结构引发了长寿命的电荷分离态,并导致了高达 60.8 μmol·h 的高制氢速率。这种整合了两个位点的设计在单个混合结构中完成了每个半反应,为高效人工光合作用提供了潜在的指导原则。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验