Department of Chemistry, Emory University , 1515 Dickey Drive, NE, Atlanta, Georgia 30322, United States.
ACS Nano. 2015 Jan 27;9(1):961-8. doi: 10.1021/nn506796m. Epub 2015 Jan 2.
Colloidal cadmium chalcogenide nanosheets with atomically precise thickness of a few atomic layers and size of 10-100 nm are two-dimensional (2D) quantum well materials with strong and precise quantum confinement in the thickness direction. Despite their many advantageous properties, excitons in these and other 2D metal chalcogenide materials are short-lived due to large radiative and nonradiative recombination rates, hindering their applications as light harvesting and charge separation/transport materials for solar energy conversion. We showed that these problems could be overcome in type-II CdSe/CdTe core/crown heteronanosheets (with CdTe crown laterally extending on the CdSe nanosheet core). Photoluminesence excitation measurement revealed that nearly all excitons generated in the CdSe and CdTe domains localized to the CdSe/CdTe interface to form long-lived charge transfer excitons (with electrons in the CdSe domain and hole in the CdTe domain). By ultrafast transient absorption spectroscopy, we showed that the efficient exciton localization efficiency could be attributed to ultrafast exciton localization (0.64 ± 0.07 ps), which was facilitated by large in-plane exciton mobility in these 2D materials and competed effectively with exiton trapping at the CdSe or CdTe domains. The spatial separation of electrons and holes across the CdSe/CdTe heterojunction effectively suppressed radiative and nonradiative recombination processes, leading to a long-lived charge transfer exciton state with a half-life of ∼ 41.7 ± 2.5 ns, ∼ 30 times longer than core-only CdSe nanosheets.
胶体碲镉量子点纳米片具有原子级厚度(几个原子层)和 10-100nm 的尺寸,是二维(2D)量子阱材料,在厚度方向上具有强且精确的量子限制。尽管这些材料具有许多优良的性质,但由于大的辐射和非辐射复合速率,这些材料和其他二维金属硫属化物材料中的激子寿命较短,这阻碍了它们作为光收集和电荷分离/传输材料在太阳能转换中的应用。我们表明,这些问题可以在 II 型 CdSe/CdTe 核/壳异质纳米片中得到克服(CdTe 壳层在 CdSe 纳米片核上横向扩展)。光致发光激发测量表明,几乎所有在 CdSe 和 CdTe 域中产生的激子都定域在 CdSe/CdTe 界面处,形成长寿命的电荷转移激子(电子在 CdSe 域中,空穴在 CdTe 域中)。通过超快瞬态吸收光谱,我们表明高效激子局域化效率可归因于超快激子局域化(0.64 ± 0.07 ps),这是由于这些 2D 材料中面内激子迁移率大,与 CdSe 或 CdTe 域中的激子捕获有效竞争。电子和空穴在 CdSe/CdTe 异质结中的空间分离有效地抑制了辐射和非辐射复合过程,导致长寿命的电荷转移激子态,半衰期约为 41.7 ± 2.5 ns,比仅含有 CdSe 纳米片的核长约 30 倍。