Computational Biology Center, T.J. Watson IBM Research Laboratory, Yorktown Heights, New York, USA.
PLoS Comput Biol. 2012;8(10):e1002719. doi: 10.1371/journal.pcbi.1002719. Epub 2012 Oct 25.
While the static magnitude of thermal pain perception has been shown to follow a power-law function of the temperature, its dynamical features have been largely overlooked. Due to the slow temporal experience of pain, multiple studies now show that the time evolution of its magnitude can be captured with continuous online ratings. Here we use such ratings to model quantitatively the temporal dynamics of thermal pain perception. We show that a differential equation captures the details of the temporal evolution in pain ratings in individual subjects for different stimulus pattern complexities, and also demonstrates strong predictive power to infer pain ratings, including readouts based only on brain functional images.
虽然热痛觉的静态幅度已被证明遵循温度的幂律函数,但它的动态特征在很大程度上被忽视了。由于疼痛的时间体验较慢,现在有多项研究表明,其幅度的时间演化可以通过连续在线评分来捕捉。在这里,我们使用这些评分来定量地对热痛觉感知的时间动态进行建模。我们表明,对于不同的刺激模式复杂度,微分方程可以捕捉个体受试者在疼痛评分中的时间演化的细节,并且还表现出很强的预测能力,可以推断疼痛评分,包括仅基于脑功能图像的读数。