Suppr超能文献

一种从常规报告数据估算结核病发病率和病例发现率的方法。

An approach to estimating tuberculosis incidence and case detection rate from routine notification data.

机构信息

<sup>*</sup>Institute for Numerical Mathematics, Russian Academy of Sciences, Moscow, <sup>†</sup>Federal Research Institute for Health Organization and Informatics, Ministry of Health of the Russian Federation, Moscow.

<sup>*</sup>Institute for Numerical Mathematics, Russian Academy of Sciences, Moscow, <sup>‡</sup>Lomonosov Moscow State University, Moscow, <sup>§</sup>Moscow Institute of Physics and Technology (State University), Moscow.

出版信息

Int J Tuberc Lung Dis. 2015 Mar;19(3):288-94, i-x. doi: 10.5588/ijtld.14.0317.

Abstract

OBJECTIVE

To estimate tuberculosis (TB) incidence and case detection rate (CDR) using routine TB surveillance data only.

METHODS

A mathematical model of the case detection process, representing competition between disease progression and case finding, is proposed. The model describes disease progression as a two-stage process (bacillary and non-bacillary TB), and so relates the proportion of bacillary TB cases on detection to the effectiveness of detection. Thus, given the annual numbers of newly detected TB cases stratified by bacillary status, the model estimates detection rates, incidence and CDR. Routine notification data from eight provinces in Russia, 2000-2011, were used for the study.

RESULTS

Subnational level estimates of incidence and CDR were obtained. Incidence estimates varied by two-fold among the provinces; corrected CDR estimates varied by 1.5 times. The trend in the incidence estimates was similar to that in the World Health Organization estimates for the whole of Russia. The change in the trend in WHO CDR estimates in 2008-2009 was not supported by our estimates.

CONCLUSION

The general approach that uses multistage models of disease progression and accordingly stratified notification data can be applied in various settings for the routine estimation of incidence and CDR.

摘要

目的

仅使用常规结核病监测数据来估计结核病(TB)发病率和病例发现率(CDR)。

方法

提出了一种病例发现过程的数学模型,该模型代表疾病进展和病例发现之间的竞争。该模型将疾病进展描述为一个两阶段过程(菌型和非菌型 TB),因此将检测到的菌型结核病病例的比例与检测的有效性联系起来。因此,根据每年按菌型分层的新发现结核病病例数,该模型估计了检测率、发病率和 CDR。研究使用了 2000-2011 年俄罗斯八个省份的常规报告数据。

结果

获得了省级水平的发病率和 CDR 估计值。各省之间的发病率估计值相差两倍;经校正的 CDR 估计值相差 1.5 倍。发病率估计值的趋势与整个俄罗斯世界卫生组织的估计值相似。我们的估计值不支持 2008-2009 年世卫组织 CDR 估计值趋势的变化。

结论

使用疾病进展多阶段模型并相应地对报告数据进行分层的一般方法可在各种情况下用于常规估计发病率和 CDR。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验