Shaweno Debebe, Trauer James M, Denholm Justin T, McBryde Emma S
Department of Medicine, University of Melbourne, Melbourne, VIC, Australia.
Victorian Tuberculosis Program at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia.
BMC Infect Dis. 2017 Oct 2;17(1):662. doi: 10.1186/s12879-017-2759-0.
Reported tuberculosis (TB) incidence globally continues to be heavily influenced by expert opinion of case detection rates and ecological estimates of disease duration. Both approaches are recognised as having substantial variability and inaccuracy, leading to uncertainty in true TB incidence and other such derived statistics.
We developed Bayesian binomial mixture geospatial models to estimate TB incidence and case detection rate (CDR) in Ethiopia. In these models the underlying true incidence was formulated as a partially observed Markovian process following a mixed Poisson distribution and the detected (observed) TB cases as a binomial distribution, conditional on CDR and true incidence. The models use notification data from multiple areas over several years and account for the existence of undetected TB cases and variability in true underlying incidence and CDR. Deviance information criteria (DIC) were used to select the best performing model.
A geospatial model was the best fitting approach. This model estimated that TB incidence in Sheka Zone increased from 198 (95% Credible Interval (CrI) 187, 233) per 100,000 population in 2010 to 232 (95% CrI 212, 253) per 100,000 population in 2014. The model revealed a wide discrepancy between the estimated incidence rate and notification rate, with the estimated incidence ranging from 1.4 (in 2014) to 1.7 (in 2010) times the notification rate (CDR of 71% and 60% respectively). Population density and TB incidence in neighbouring locations (spatial lag) predicted the underlying TB incidence, while health facility availability predicted higher CDR.
Our model estimated trends in underlying TB incidence while accounting for undetected cases and revealed significant discrepancies between incidence and notification rates in rural Ethiopia. This approach provides an alternative approach to estimating incidence, entirely independent of the methods involved in current estimates and is feasible to perform from routinely collected surveillance data.
全球报告的结核病发病率仍然受到病例发现率的专家意见和疾病持续时间的生态估计的严重影响。这两种方法都被认为具有很大的变异性和不准确性,导致真实结核病发病率和其他此类派生统计数据存在不确定性。
我们开发了贝叶斯二项混合地理空间模型,以估计埃塞俄比亚的结核病发病率和病例发现率(CDR)。在这些模型中,潜在的真实发病率被制定为遵循混合泊松分布的部分观察到的马尔可夫过程,而检测到的(观察到的)结核病病例被制定为二项分布,以CDR和真实发病率为条件。这些模型使用多年来多个地区的通报数据,并考虑到未检测到的结核病病例的存在以及潜在真实发病率和CDR的变异性。偏差信息准则(DIC)用于选择表现最佳的模型。
地理空间模型是最合适的方法。该模型估计,谢卡地区的结核病发病率从2010年的每10万人198例(95%可信区间(CrI)187, 233)增加到2014年的每10万人232例(95% CrI 212, 253)。该模型显示估计发病率与通报率之间存在很大差异,估计发病率是通报率的1.4倍(2014年)至1.7倍(2010年)(CDR分别为71%和60%)。人口密度和邻近地区的结核病发病率(空间滞后)预测了潜在的结核病发病率,而卫生设施的可用性预测了更高的CDR。
我们的模型在考虑未检测到的病例的同时估计了潜在的结核病发病率趋势,并揭示了埃塞俄比亚农村地区发病率和通报率之间的显著差异。这种方法提供了一种估计发病率的替代方法,完全独立于当前估计所涉及的方法,并且从常规收集的监测数据中进行操作是可行的。