Dey Sanjay, Biswas Maitree, Sen Udayaditya, Dasgupta Jhimli
From the Department of Biotechnology, St. Xavier's College, 30 Park Street, Kolkata 700016 and.
the Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, 1/AF, Bidhannagar, Kolkata 700064, India.
J Biol Chem. 2015 Apr 3;290(14):8734-47. doi: 10.1074/jbc.M114.611434. Epub 2015 Feb 16.
Bacterial enhancer-binding proteins (bEBPs) oligomerize through AAA(+) domains and use ATP hydrolysis-driven energy to isomerize the RNA polymerase-σ(54) complex during transcriptional initiation. Here, we describe the first structure of the central AAA(+) domain of the flagellar regulatory protein FlrC (FlrC(C)), a bEBP that controls flagellar synthesis in Vibrio cholerae. Our results showed that FlrC(C) forms heptamer both in nucleotide (Nt)-free and -bound states without ATP-dependent subunit remodeling. Unlike the bEBPs such as NtrC1 or PspF, a novel cis-mediated "all or none" ATP binding occurs in the heptameric FlrC(C), because constriction at the ATPase site, caused by loop L3 and helix α7, restricts the proximity of the trans-protomer required for Nt binding. A unique "closed to open" movement of Walker A, assisted by trans-acting "Glu switch" Glu-286, facilitates ATP binding and hydrolysis. Fluorescence quenching and ATPase assays on FlrC(C) and mutants revealed that although Arg-349 of sensor II, positioned by trans-acting Glu-286 and Tyr-290, acts as a key residue to bind and hydrolyze ATP, Arg-319 of α7 anchors ribose and controls the rate of ATP hydrolysis by retarding the expulsion of ADP. Heptameric state of FlrC(C) is restored in solution even with the transition state mimicking ADP·AlF3. Structural results and pulldown assays indicated that L3 renders an in-built geometry to L1 and L2 causing σ(54)-FlrC(C) interaction independent of Nt binding. Collectively, our results underscore a novel mechanism of ATP binding and σ(54) interaction that strives to understand the transcriptional mechanism of the bEBPs, which probably interact directly with the RNA polymerase-σ(54) complex without DNA looping.
细菌增强子结合蛋白(bEBPs)通过AAA(+)结构域形成寡聚体,并利用ATP水解驱动的能量在转录起始过程中使RNA聚合酶-σ(54)复合物异构化。在此,我们描述了鞭毛调节蛋白FlrC(FlrC(C))的中心AAA(+)结构域的首个结构,FlrC是一种控制霍乱弧菌鞭毛合成的bEBP。我们的结果表明,FlrC(C)在无核苷酸(Nt)和结合Nt的状态下均形成七聚体,且无需ATP依赖的亚基重塑。与NtrC1或PspF等bEBPs不同,在七聚体FlrC(C)中发生了一种新型的顺式介导的“全或无”ATP结合,这是因为由环L3和螺旋α7引起的ATPase位点收缩限制了Nt结合所需的反式原聚体的接近。在反式作用的“谷氨酸开关”Glu-286的辅助下,沃克A独特的“从关闭到开放”运动促进了ATP的结合和水解。对FlrC(C)及其突变体的荧光猝灭和ATPase分析表明,尽管由反式作用的Glu-286和Tyr-290定位的传感器II的Arg-349作为结合和水解ATP的关键残基,但α7的Arg-319锚定核糖并通过延缓ADP的排出控制ATP水解速率。即使存在模拟过渡态的ADP·AlF3,FlrC(C)的七聚体状态在溶液中也能恢复。结构结果和下拉分析表明,L3为L1和L2赋予了内在几何结构,导致σ(54)-FlrC(C)相互作用独立于Nt结合。总的来说,我们的结果强调了一种ATP结合和σ(54)相互作用的新机制,该机制有助于理解bEBPs的转录机制,bEBPs可能直接与RNA聚合酶-σ(54)复合物相互作用而无需DNA环化。