Zheng Zheng, Wang Ting, Li Pengfei, Merz Kenneth M
Institute for Cyber Enabled Research, Department of Chemistry and Department of Biochemistry and Molecular Biology, Michigan State University, 578 South Shaw Lane, East Lansing, Michigan 48824-1322, United States
J Chem Theory Comput. 2015 Feb 10;11(2):667-82. doi: 10.1021/ct5007828.
Computation of the solvation free energy for chemical and biological processes has long been of significant interest. The key challenges to effective solvation modeling center on the choice of potential function and configurational sampling. Herein, an energy sampling approach termed the “Movable Type” (MT) method, and a statistical energy function for solvation modeling, “Knowledge-based and Empirical Combined Scoring Algorithm” (KECSA) are developed and utilized to create an implicit solvation model: KECSA-Movable Type Implicit Solvation Model (KMTISM) suitable for the study of chemical and biological systems. KMTISM is an implicit solvation model, but the MT method performs energy sampling at the atom pairwise level. For a specific molecular system, the MT method collects energies from prebuilt databases for the requisite atom pairs at all relevant distance ranges, which by its very construction encodes all possible molecular configurations simultaneously. Unlike traditional statistical energy functions, KECSA converts structural statistical information into categorized atom pairwise interaction energies as a function of the radial distance instead of a mean force energy function. Within the implicit solvent model approximation, aqueous solvation free energies are then obtained from the NVT ensemble partition function generated by the MT method. Validation is performed against several subsets selected from the Minnesota Solvation Database v2012. Results are compared with several solvation free energy calculation methods, including a one-to-one comparison against two commonly used classical implicit solvation models: MM-GBSA and MM-PBSA. Comparison against a quantum mechanics based polarizable continuum model is also discussed (Cramer and Truhlar’s Solvation Model 12).
长期以来,计算化学和生物过程中的溶剂化自由能一直备受关注。有效溶剂化建模的关键挑战集中在势函数的选择和构型采样上。在此,开发并利用了一种称为“活字”(MT)方法的能量采样方法以及一种用于溶剂化建模的统计能量函数“基于知识和经验的组合评分算法”(KECSA),以创建一个适用于化学和生物系统研究的隐式溶剂化模型:KECSA-活字隐式溶剂化模型(KMTISM)。KMTISM是一种隐式溶剂化模型,但MT方法在原子对水平上进行能量采样。对于特定的分子系统,MT方法从预建数据库中收集所有相关距离范围内所需原子对的能量,其构建方式同时编码了所有可能的分子构型。与传统的统计能量函数不同,KECSA将结构统计信息转换为作为径向距离函数的分类原子对相互作用能,而不是平均力能量函数。在隐式溶剂模型近似下,然后从MT方法生成的NVT系综配分函数中获得水合溶剂化自由能。针对从明尼苏达溶剂化数据库v2012中选择的几个子集进行了验证。将结果与几种溶剂化自由能计算方法进行了比较,包括与两种常用的经典隐式溶剂化模型MM-GBSA和MM-PBSA进行一对一比较。还讨论了与基于量子力学的可极化连续介质模型(Cramer和Truhlar的溶剂化模型12)的比较。