Suppr超能文献

用于 D3R 大挑战中的构象和结合亲和力预测和排序的数学深度学习。

Mathematical deep learning for pose and binding affinity prediction and ranking in D3R Grand Challenges.

机构信息

Department of Mathematics, Michigan State University, East Lansing , MI, 48824, USA.

Department of Electrical and Computer Engineering, Michigan State University, East Lansing , MI, 48824, USA.

出版信息

J Comput Aided Mol Des. 2019 Jan;33(1):71-82. doi: 10.1007/s10822-018-0146-6. Epub 2018 Aug 16.

Abstract

Advanced mathematics, such as multiscale weighted colored subgraph and element specific persistent homology, and machine learning including deep neural networks were integrated to construct mathematical deep learning models for pose and binding affinity prediction and ranking in the last two D3R Grand Challenges in computer-aided drug design and discovery. D3R Grand Challenge 2 focused on the pose prediction, binding affinity ranking and free energy prediction for Farnesoid X receptor ligands. Our models obtained the top place in absolute free energy prediction for free energy set 1 in stage 2. The latest competition, D3R Grand Challenge 3 (GC3), is considered as the most difficult challenge so far. It has five subchallenges involving Cathepsin S and five other kinase targets, namely VEGFR2, JAK2, p38-α, TIE2, and ABL1. There is a total of 26 official competitive tasks for GC3. Our predictions were ranked 1st in 10 out of these 26 tasks.

摘要

先进的数学方法,如多尺度加权彩色子图和元素特定持久同调,以及机器学习,包括深度神经网络,被整合到计算机辅助药物设计和发现的最后两个 D3R 大型挑战中,用于构建设置和结合亲和力预测和排序的数学深度学习模型。D3R 大型挑战 2 专注于法尼醇 X 受体配体的构象预测、结合亲和力排序和自由能预测。我们的模型在第 2 阶段的自由能集 1 中获得了绝对自由能预测的第一名。最新的竞争,D3R 大型挑战 3(GC3),被认为是迄今为止最困难的挑战。它有五个子挑战,涉及组织蛋白酶 S 和其他五个激酶靶标,即 VEGFR2、JAK2、p38-α、TIE2 和 ABL1。GC3 共有 26 个官方竞争任务。我们的预测在这 26 个任务中的 10 个中排名第一。

相似文献

1
Mathematical deep learning for pose and binding affinity prediction and ranking in D3R Grand Challenges.
J Comput Aided Mol Des. 2019 Jan;33(1):71-82. doi: 10.1007/s10822-018-0146-6. Epub 2018 Aug 16.
2
D3R Grand Challenge 3: blind prediction of protein-ligand poses and affinity rankings.
J Comput Aided Mol Des. 2019 Jan;33(1):1-18. doi: 10.1007/s10822-018-0180-4. Epub 2019 Jan 10.
3
Protein-ligand pose and affinity prediction: Lessons from D3R Grand Challenge 3.
J Comput Aided Mol Des. 2019 Jan;33(1):83-91. doi: 10.1007/s10822-018-0148-4. Epub 2018 Aug 20.
4
MathDL: mathematical deep learning for D3R Grand Challenge 4.
J Comput Aided Mol Des. 2020 Feb;34(2):131-147. doi: 10.1007/s10822-019-00237-5. Epub 2019 Nov 16.
7
Predicting the affinity of Farnesoid X Receptor ligands through a hierarchical ranking protocol: a D3R Grand Challenge 2 case study.
J Comput Aided Mol Des. 2018 Jan;32(1):231-238. doi: 10.1007/s10822-017-0063-0. Epub 2017 Sep 14.
8
Hybrid receptor structure/ligand-based docking and activity prediction in ICM: development and evaluation in D3R Grand Challenge 3.
J Comput Aided Mol Des. 2019 Jan;33(1):35-46. doi: 10.1007/s10822-018-0139-5. Epub 2018 Aug 9.
9
Shape similarity guided pose prediction: lessons from D3R Grand Challenge 3.
J Comput Aided Mol Des. 2019 Jan;33(1):47-59. doi: 10.1007/s10822-018-0142-x. Epub 2018 Aug 6.
10
Ranking docking poses by graph matching of protein-ligand interactions: lessons learned from the D3R Grand Challenge 2.
J Comput Aided Mol Des. 2018 Jan;32(1):75-87. doi: 10.1007/s10822-017-0046-1. Epub 2017 Aug 1.

引用本文的文献

1
Predicting Affinity Through Homology (PATH): Interpretable binding affinity prediction with persistent homology.
PLoS Comput Biol. 2025 Jun 27;21(6):e1013216. doi: 10.1371/journal.pcbi.1013216. eCollection 2025 Jun.
2
CAML: Commutative Algebra Machine Learning─A Case Study on Protein-Ligand Binding Affinity Prediction.
J Chem Inf Model. 2025 Jul 14;65(13):6732-6743. doi: 10.1021/acs.jcim.5c00940. Epub 2025 Jun 15.
3
Artificial intelligence approaches for anti-addiction drug discovery.
Digit Discov. 2025 May 13. doi: 10.1039/d5dd00032g.
4
Manifold Topological Deep Learning for Biomedical Data.
Res Sq. 2025 Apr 7:rs.3.rs-6149503. doi: 10.21203/rs.3.rs-6149503/v1.
5
A review of machine learning methods for imbalanced data challenges in chemistry.
Chem Sci. 2025 Apr 22;16(18):7637-7658. doi: 10.1039/d5sc00270b. eCollection 2025 May 7.
7
Persistent Directed Flag Laplacian (PDFL)-Based Machine Learning for Protein-Ligand Binding Affinity Prediction.
J Chem Theory Comput. 2025 Apr 22;21(8):4276-4285. doi: 10.1021/acs.jctc.5c00074. Epub 2025 Apr 5.
8
Proteomic Learning of Gamma-Aminobutyric Acid (GABA) Receptor-Mediated Anesthesia.
J Chem Inf Model. 2025 Apr 14;65(7):3655-3668. doi: 10.1021/acs.jcim.5c00114. Epub 2025 Mar 17.
9
Category-specific topological learning of metal-organic frameworks.
J Mater Chem A Mater. 2025 Feb 24;13(13):9292-9303. doi: 10.1039/d4ta08877h. eCollection 2025 Mar 25.
10
GRADE and X-GRADE: Unveiling Novel Protein-Ligand Interaction Fingerprints Based on GRAIL Scores.
J Chem Inf Model. 2025 Mar 10;65(5):2456-2475. doi: 10.1021/acs.jcim.4c01902. Epub 2025 Feb 20.

本文引用的文献

2
Multiscale weighted colored graphs for protein flexibility and rigidity analysis.
J Chem Phys. 2018 Feb 7;148(5):054103. doi: 10.1063/1.5016562.
3
Quantitative Toxicity Prediction Using Topology Based Multitask Deep Neural Networks.
J Chem Inf Model. 2018 Feb 26;58(2):520-531. doi: 10.1021/acs.jcim.7b00558. Epub 2018 Jan 31.
4
Representability of algebraic topology for biomolecules in machine learning based scoring and virtual screening.
PLoS Comput Biol. 2018 Jan 8;14(1):e1005929. doi: 10.1371/journal.pcbi.1005929. eCollection 2018 Jan.
5
Analysis and prediction of protein folding energy changes upon mutation by element specific persistent homology.
Bioinformatics. 2017 Nov 15;33(22):3549-3557. doi: 10.1093/bioinformatics/btx460.
6
TopologyNet: Topology based deep convolutional and multi-task neural networks for biomolecular property predictions.
PLoS Comput Biol. 2017 Jul 27;13(7):e1005690. doi: 10.1371/journal.pcbi.1005690. eCollection 2017 Jul.
7
Integration of element specific persistent homology and machine learning for protein-ligand binding affinity prediction.
Int J Numer Method Biomed Eng. 2018 Feb;34(2). doi: 10.1002/cnm.2914. Epub 2017 Aug 16.
8
Rigidity Strengthening: A Mechanism for Protein-Ligand Binding.
J Chem Inf Model. 2017 Jul 24;57(7):1715-1721. doi: 10.1021/acs.jcim.7b00226. Epub 2017 Jul 12.
9
Forging the Basis for Developing Protein-Ligand Interaction Scoring Functions.
Acc Chem Res. 2017 Feb 21;50(2):302-309. doi: 10.1021/acs.accounts.6b00491. Epub 2017 Feb 9.
10
ESES: Software for Eulerian solvent excluded surface.
J Comput Chem. 2017 Mar 15;38(7):446-466. doi: 10.1002/jcc.24682. Epub 2017 Jan 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验