Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University Kumamoto, Japan ; Center for Clinical Pharmaceutical Sciences, School of Pharmacy, Kumamoto University Kumamoto, Japan.
Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University Kumamoto, Japan.
Pharmacol Res Perspect. 2015 Feb;3(1):e00092. doi: 10.1002/prp2.92. Epub 2014 Nov 7.
The major cause of death in patients with chronic kidney disease (CKD) is cardiovascular disease. Here, p-Cresyl sulfate (PCS), a uremic toxin, is considered to be a risk factor for cardiovascular disease in CKD. However, our understanding of the vascular toxicity induced by PCS and its mechanism is incomplete. The purpose of this study was to determine whether PCS enhances the production of reactive oxygen species (ROS) in vascular endothelial and smooth muscle cells, resulting in cytotoxicity. PCS exhibited pro-oxidant properties in human umbilical vein endothelial cells (HUVEC) and aortic smooth muscle cells (HASMC) by enhancing NADPH oxidase expression. PCS also up-regulates the mRNA levels and the protein secretion of monocyte chemotactic protein-1 (MCP-1) in HUVEC. In HASMC, PCS increased the mRNA levels of alkaline phosphatase (ALP), osteopontin (OPN), core-binding factor alpha 1, and ALP activity. The knockdown of Nox4, a subunit of NADPH oxidase, suppressed the cell toxicity induced by PCS. The vascular damage induced by PCS was largely suppressed in the presence of probenecid, an inhibitor of organic anion transporters (OAT). In PCS-overloaded 5/6-nephrectomized rats, plasma MCP-1 levels, OPN expression, and ALP activity of the aortic arch were increased, accompanied by the induction of Nox4 expression. Collectively, the vascular toxicity of PCS can be attributed to its intracellular accumulation via OAT, which results in an enhanced NADPH oxidase expression and increased ROS production. In conclusion, we found for the first time that PCS could play an important role in the development of cardiovascular disease by inducing vascular toxicity in the CKD condition.
慢性肾脏病(CKD)患者的主要死亡原因是心血管疾病。在这里,硫酸对甲酚(PCS)被认为是 CKD 心血管疾病的危险因素。然而,我们对 PCS 诱导的血管毒性及其机制的理解并不完整。本研究旨在确定 PCS 是否会增强血管内皮和平滑肌细胞中活性氧(ROS)的产生,从而导致细胞毒性。PCS 通过增强 NADPH 氧化酶表达,在人脐静脉内皮细胞(HUVEC)和主动脉平滑肌细胞(HASMC)中表现出促氧化剂特性。PCS 还上调了 HUVEC 单核细胞趋化蛋白-1(MCP-1)的 mRNA 水平和蛋白分泌。在 HASMC 中,PCS 增加了碱性磷酸酶(ALP)、骨桥蛋白(OPN)、核心结合因子α 1 和 ALP 活性的 mRNA 水平。NADPH 氧化酶亚基 Nox4 的敲低抑制了 PCS 诱导的细胞毒性。有机阴离子转运体(OAT)抑制剂丙磺舒在很大程度上抑制了 PCS 引起的血管损伤。在 PCS 过载 5/6 肾切除大鼠中,血浆 MCP-1 水平、主动脉弓 OPN 表达和 ALP 活性增加,同时诱导 Nox4 表达。综上所述,PCS 通过 OAT 进入细胞内积累,导致 NADPH 氧化酶表达增强和 ROS 产生增加,从而引起血管毒性。总之,我们首次发现 PCS 可通过在 CKD 条件下诱导血管毒性在心血管疾病的发展中发挥重要作用。